You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/tests/test_transformer.py

45 lines
1.5 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import LearningSolver
from miplearn.transformers import PerVariableTransformer
from miplearn.problems.knapsack import MultiKnapsackInstance
import numpy as np
import pyomo.environ as pe
def test_transform_with_categories():
transformer = PerVariableTransformer()
instance = MultiKnapsackInstance(
weights=np.array([[23., 26., 20., 18.]]),
prices=np.array([505., 352., 458., 220.]),
capacities=np.array([67.])
)
model = instance.to_model()
solver = pe.SolverFactory('gurobi')
solver.options["threads"] = 1
solver.solve(model)
var_split = transformer.split_variables(instance, model)
var_split_expected = {
0: [(model.x, 0)],
1: [(model.x, 1)],
2: [(model.x, 2)],
3: [(model.x, 3)],
}
assert var_split == var_split_expected
var_index_pairs = var_split[0]
x_actual = transformer.transform_instance(instance, var_index_pairs)
x_expected = np.hstack([
instance.get_instance_features(),
instance.get_variable_features(model.x, 0),
])
assert (x_expected == x_actual).all()
solver.solve(model)
y_actual = transformer.transform_solution(var_index_pairs)
y_expected = np.array([[0., 1.]])
assert y_actual.tolist() == y_expected.tolist()