You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
363 lines
12 KiB
363 lines
12 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
import re
|
|
import sys
|
|
import logging
|
|
from io import StringIO
|
|
|
|
from . import RedirectOutput
|
|
from .internal import InternalSolver
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class GurobiSolver(InternalSolver):
|
|
def __init__(
|
|
self,
|
|
params=None,
|
|
lazy_cb_frequency=1,
|
|
):
|
|
"""
|
|
An InternalSolver backed by Gurobi's Python API (without Pyomo).
|
|
|
|
Parameters
|
|
----------
|
|
params
|
|
Parameters to pass to Gurobi. For example, params={"MIPGap": 1e-3}
|
|
sets the gap tolerance to 1e-3.
|
|
lazy_cb_frequency
|
|
If 1, calls lazy constraint callbacks whenever an integer solution
|
|
is found. If 2, calls it also at every node, after solving the
|
|
LP relaxation of that node.
|
|
"""
|
|
if params is None:
|
|
params = {}
|
|
params["InfUnbdInfo"] = True
|
|
from gurobipy import GRB
|
|
|
|
self.GRB = GRB
|
|
self.instance = None
|
|
self.model = None
|
|
self.params = params
|
|
self._all_vars = None
|
|
self._bin_vars = None
|
|
self.cb_where = None
|
|
assert lazy_cb_frequency in [1, 2]
|
|
if lazy_cb_frequency == 1:
|
|
self.lazy_cb_where = [self.GRB.Callback.MIPSOL]
|
|
else:
|
|
self.lazy_cb_where = [self.GRB.Callback.MIPSOL, self.GRB.Callback.MIPNODE]
|
|
|
|
def set_instance(self, instance, model=None):
|
|
self._raise_if_callback()
|
|
if model is None:
|
|
model = instance.to_model()
|
|
self.instance = instance
|
|
self.model = model
|
|
self.model.update()
|
|
self._update_vars()
|
|
|
|
def _raise_if_callback(self):
|
|
if self.cb_where is not None:
|
|
raise Exception("method cannot be called from a callback")
|
|
|
|
def _update_vars(self):
|
|
self._all_vars = {}
|
|
self._bin_vars = {}
|
|
for var in self.model.getVars():
|
|
m = re.search(r"([^[]*)\[(.*)\]", var.varName)
|
|
if m is None:
|
|
name = var.varName
|
|
idx = [0]
|
|
else:
|
|
name = m.group(1)
|
|
idx = tuple(
|
|
int(k) if k.isdecimal() else k for k in m.group(2).split(",")
|
|
)
|
|
if len(idx) == 1:
|
|
idx = idx[0]
|
|
if name not in self._all_vars:
|
|
self._all_vars[name] = {}
|
|
self._all_vars[name][idx] = var
|
|
if var.vtype != "C":
|
|
if name not in self._bin_vars:
|
|
self._bin_vars[name] = {}
|
|
self._bin_vars[name][idx] = var
|
|
|
|
def _apply_params(self, streams):
|
|
with RedirectOutput(streams):
|
|
for (name, value) in self.params.items():
|
|
self.model.setParam(name, value)
|
|
|
|
def solve_lp(self, tee=False):
|
|
self._raise_if_callback()
|
|
streams = [StringIO()]
|
|
if tee:
|
|
streams += [sys.stdout]
|
|
self._apply_params(streams)
|
|
for (varname, vardict) in self._bin_vars.items():
|
|
for (idx, var) in vardict.items():
|
|
var.vtype = self.GRB.CONTINUOUS
|
|
var.lb = 0.0
|
|
var.ub = 1.0
|
|
with RedirectOutput(streams):
|
|
self.model.optimize()
|
|
for (varname, vardict) in self._bin_vars.items():
|
|
for (idx, var) in vardict.items():
|
|
var.vtype = self.GRB.BINARY
|
|
log = streams[0].getvalue()
|
|
return {"Optimal value": self.model.objVal, "Log": log}
|
|
|
|
def solve(self, tee=False, iteration_cb=None, lazy_cb=None):
|
|
self._raise_if_callback()
|
|
|
|
def cb_wrapper(cb_model, cb_where):
|
|
try:
|
|
self.cb_where = cb_where
|
|
if cb_where in self.lazy_cb_where:
|
|
lazy_cb(self, self.model)
|
|
except:
|
|
logger.exception("callback error")
|
|
finally:
|
|
self.cb_where = None
|
|
|
|
if lazy_cb:
|
|
self.params["LazyConstraints"] = 1
|
|
total_wallclock_time = 0
|
|
total_nodes = 0
|
|
streams = [StringIO()]
|
|
if tee:
|
|
streams += [sys.stdout]
|
|
self._apply_params(streams)
|
|
if iteration_cb is None:
|
|
iteration_cb = lambda: False
|
|
while True:
|
|
with RedirectOutput(streams):
|
|
if lazy_cb is None:
|
|
self.model.optimize()
|
|
else:
|
|
self.model.optimize(cb_wrapper)
|
|
total_wallclock_time += self.model.runtime
|
|
total_nodes += int(self.model.nodeCount)
|
|
should_repeat = iteration_cb()
|
|
if not should_repeat:
|
|
break
|
|
log = streams[0].getvalue()
|
|
if self.model.modelSense == 1:
|
|
sense = "min"
|
|
lb = self.model.objBound
|
|
ub = self.model.objVal
|
|
else:
|
|
sense = "max"
|
|
lb = self.model.objVal
|
|
ub = self.model.objBound
|
|
return {
|
|
"Lower bound": lb,
|
|
"Upper bound": ub,
|
|
"Wallclock time": total_wallclock_time,
|
|
"Nodes": total_nodes,
|
|
"Sense": sense,
|
|
"Log": log,
|
|
"Warm start value": self._extract_warm_start_value(log),
|
|
}
|
|
|
|
def get_sense(self):
|
|
if self.model.modelSense == 1:
|
|
return "min"
|
|
else:
|
|
return "max"
|
|
|
|
def get_solution(self):
|
|
self._raise_if_callback()
|
|
|
|
solution = {}
|
|
for (varname, vardict) in self._all_vars.items():
|
|
solution[varname] = {}
|
|
for (idx, var) in vardict.items():
|
|
solution[varname][idx] = var.x
|
|
return solution
|
|
|
|
def get_value(self, var_name, index):
|
|
var = self._all_vars[var_name][index]
|
|
return self._get_value(var)
|
|
|
|
def is_infeasible(self):
|
|
return self.model.status in [self.GRB.INFEASIBLE, self.GRB.INF_OR_UNBD]
|
|
|
|
def get_dual(self, cid):
|
|
c = self.model.getConstrByName(cid)
|
|
if self.is_infeasible():
|
|
return c.farkasDual
|
|
else:
|
|
return c.pi
|
|
|
|
def _get_value(self, var):
|
|
if self.cb_where == self.GRB.Callback.MIPSOL:
|
|
return self.model.cbGetSolution(var)
|
|
elif self.cb_where == self.GRB.Callback.MIPNODE:
|
|
return self.model.cbGetNodeRel(var)
|
|
elif self.cb_where is None:
|
|
return var.x
|
|
else:
|
|
raise Exception(
|
|
"get_value cannot be called from cb_where=%s" % self.cb_where
|
|
)
|
|
|
|
def get_variables(self):
|
|
self._raise_if_callback()
|
|
variables = {}
|
|
for (varname, vardict) in self._all_vars.items():
|
|
variables[varname] = []
|
|
for (idx, var) in vardict.items():
|
|
variables[varname] += [idx]
|
|
return variables
|
|
|
|
def add_constraint(self, constraint, name=""):
|
|
if type(constraint) is tuple:
|
|
lhs, sense, rhs, name = constraint
|
|
if self.cb_where in [self.GRB.Callback.MIPSOL, self.GRB.Callback.MIPNODE]:
|
|
self.model.cbLazy(lhs, sense, rhs)
|
|
else:
|
|
self.model.addConstr(lhs, sense, rhs, name)
|
|
else:
|
|
if self.cb_where in [self.GRB.Callback.MIPSOL, self.GRB.Callback.MIPNODE]:
|
|
self.model.cbLazy(constraint)
|
|
else:
|
|
self.model.addConstr(constraint, name=name)
|
|
|
|
def set_warm_start(self, solution):
|
|
self._raise_if_callback()
|
|
count_fixed, count_total = 0, 0
|
|
for (varname, vardict) in solution.items():
|
|
for (idx, value) in vardict.items():
|
|
count_total += 1
|
|
if value is not None:
|
|
count_fixed += 1
|
|
self._all_vars[varname][idx].start = value
|
|
logger.info(
|
|
"Setting start values for %d variables (out of %d)"
|
|
% (count_fixed, count_total)
|
|
)
|
|
|
|
def clear_warm_start(self):
|
|
self._raise_if_callback()
|
|
for (varname, vardict) in self._all_vars:
|
|
for (idx, var) in vardict.items():
|
|
var[idx].start = self.GRB.UNDEFINED
|
|
|
|
def fix(self, solution):
|
|
self._raise_if_callback()
|
|
for (varname, vardict) in solution.items():
|
|
for (idx, value) in vardict.items():
|
|
if value is None:
|
|
continue
|
|
var = self._all_vars[varname][idx]
|
|
var.vtype = self.GRB.CONTINUOUS
|
|
var.lb = value
|
|
var.ub = value
|
|
|
|
def get_constraint_ids(self):
|
|
self._raise_if_callback()
|
|
self.model.update()
|
|
return [c.ConstrName for c in self.model.getConstrs()]
|
|
|
|
def extract_constraint(self, cid):
|
|
self._raise_if_callback()
|
|
constr = self.model.getConstrByName(cid)
|
|
cobj = (self.model.getRow(constr), constr.sense, constr.RHS, constr.ConstrName)
|
|
self.model.remove(constr)
|
|
return cobj
|
|
|
|
def is_constraint_satisfied(self, cobj, tol=1e-5):
|
|
lhs, sense, rhs, name = cobj
|
|
if self.cb_where is not None:
|
|
lhs_value = lhs.getConstant()
|
|
for i in range(lhs.size()):
|
|
var = lhs.getVar(i)
|
|
coeff = lhs.getCoeff(i)
|
|
lhs_value += self._get_value(var) * coeff
|
|
else:
|
|
lhs_value = lhs.getValue()
|
|
if sense == "<":
|
|
return lhs_value <= rhs + tol
|
|
elif sense == ">":
|
|
return lhs_value >= rhs - tol
|
|
elif sense == "=":
|
|
return abs(rhs - lhs_value) < abs(tol)
|
|
else:
|
|
raise Exception("Unknown sense: %s" % sense)
|
|
|
|
def get_inequality_slacks(self):
|
|
ineqs = [c for c in self.model.getConstrs() if c.sense != "="]
|
|
return {c.ConstrName: c.Slack for c in ineqs}
|
|
|
|
def set_constraint_sense(self, cid, sense):
|
|
c = self.model.getConstrByName(cid)
|
|
c.Sense = sense
|
|
|
|
def get_constraint_sense(self, cid):
|
|
c = self.model.getConstrByName(cid)
|
|
return c.Sense
|
|
|
|
def set_constraint_rhs(self, cid, rhs):
|
|
c = self.model.getConstrByName(cid)
|
|
c.RHS = rhs
|
|
|
|
def relax(self):
|
|
self.model = self.model.relax()
|
|
self._update_vars()
|
|
|
|
def set_branching_priorities(self, priorities):
|
|
self._raise_if_callback()
|
|
logger.warning("set_branching_priorities not implemented")
|
|
|
|
def set_threads(self, threads):
|
|
self._raise_if_callback()
|
|
self.params["Threads"] = threads
|
|
|
|
def set_time_limit(self, time_limit):
|
|
self._raise_if_callback()
|
|
self.params["TimeLimit"] = time_limit
|
|
|
|
def set_node_limit(self, node_limit):
|
|
self._raise_if_callback()
|
|
self.params["NodeLimit"] = node_limit
|
|
|
|
def set_gap_tolerance(self, gap_tolerance):
|
|
self._raise_if_callback()
|
|
self.params["MIPGap"] = gap_tolerance
|
|
|
|
def _extract_warm_start_value(self, log):
|
|
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
|
|
if ws is not None:
|
|
ws = float(ws)
|
|
return ws
|
|
|
|
def __extract(self, log, regexp, default=None):
|
|
value = default
|
|
for line in log.splitlines():
|
|
matches = re.findall(regexp, line)
|
|
if len(matches) == 0:
|
|
continue
|
|
value = matches[0]
|
|
return value
|
|
|
|
def __getstate__(self):
|
|
return {
|
|
"params": self.params,
|
|
"lazy_cb_where": self.lazy_cb_where,
|
|
}
|
|
|
|
def __setstate__(self, state):
|
|
from gurobipy import GRB
|
|
|
|
self.params = state["params"]
|
|
self.lazy_cb_where = state["lazy_cb_where"]
|
|
self.GRB = GRB
|
|
self.instance = None
|
|
self.model = None
|
|
self._all_vars = None
|
|
self._bin_vars = None
|
|
self.cb_where = None
|