You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
7.8 KiB
239 lines
7.8 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
from typing import Dict, cast, Hashable
|
|
from unittest.mock import Mock, call
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_array_equal
|
|
|
|
from miplearn import LearningSolver, InternalSolver, Instance
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.threshold import Threshold, MinProbabilityThreshold
|
|
from miplearn.components.lazy_static import StaticLazyConstraintsComponent
|
|
from miplearn.types import TrainingSample, Features, LearningSolveStats
|
|
|
|
|
|
@pytest.fixture
|
|
def sample() -> TrainingSample:
|
|
return {
|
|
"LazyStatic: Enforced": {"c1", "c2", "c4"},
|
|
}
|
|
|
|
|
|
@pytest.fixture
|
|
def features() -> Features:
|
|
return Features(
|
|
instance={
|
|
"Lazy constraint count": 4,
|
|
},
|
|
constraints={
|
|
"c1": {
|
|
"Category": "type-a",
|
|
"User features": [1.0, 1.0],
|
|
"Lazy": True,
|
|
},
|
|
"c2": {
|
|
"Category": "type-a",
|
|
"User features": [1.0, 2.0],
|
|
"Lazy": True,
|
|
},
|
|
"c3": {
|
|
"Category": "type-a",
|
|
"User features": [1.0, 3.0],
|
|
"Lazy": True,
|
|
},
|
|
"c4": {
|
|
"Category": "type-b",
|
|
"User features": [1.0, 4.0, 0.0],
|
|
"Lazy": True,
|
|
},
|
|
"c5": {
|
|
"Category": "type-b",
|
|
"User features": [1.0, 5.0, 0.0],
|
|
"Lazy": False,
|
|
},
|
|
},
|
|
)
|
|
|
|
|
|
def test_usage_with_solver(features: Features) -> None:
|
|
solver = Mock(spec=LearningSolver)
|
|
solver.use_lazy_cb = False
|
|
solver.gap_tolerance = 1e-4
|
|
|
|
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
|
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
|
|
internal.is_constraint_satisfied = Mock(return_value=False)
|
|
|
|
instance = Mock(spec=Instance)
|
|
instance.has_static_lazy_constraints = Mock(return_value=True)
|
|
|
|
component = StaticLazyConstraintsComponent(violation_tolerance=1.0)
|
|
component.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
|
component.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
|
component.classifiers = {
|
|
"type-a": Mock(spec=Classifier),
|
|
"type-b": Mock(spec=Classifier),
|
|
}
|
|
component.classifiers["type-a"].predict_proba = Mock( # type: ignore
|
|
return_value=np.array(
|
|
[
|
|
[0.00, 1.00], # c1
|
|
[0.20, 0.80], # c2
|
|
[0.99, 0.01], # c3
|
|
]
|
|
)
|
|
)
|
|
component.classifiers["type-b"].predict_proba = Mock( # type: ignore
|
|
return_value=np.array(
|
|
[
|
|
[0.02, 0.98], # c4
|
|
]
|
|
)
|
|
)
|
|
|
|
sample: TrainingSample = {}
|
|
stats: LearningSolveStats = {}
|
|
|
|
# LearningSolver calls before_solve_mip
|
|
component.before_solve_mip(
|
|
solver=solver,
|
|
instance=instance,
|
|
model=None,
|
|
stats=stats,
|
|
features=features,
|
|
training_data=sample,
|
|
)
|
|
|
|
# Should ask ML to predict whether each lazy constraint should be enforced
|
|
component.classifiers["type-a"].predict_proba.assert_called_once()
|
|
component.classifiers["type-b"].predict_proba.assert_called_once()
|
|
|
|
# Should ask internal solver to remove some constraints
|
|
assert internal.extract_constraint.call_count == 1
|
|
internal.extract_constraint.assert_has_calls([call("c3")])
|
|
|
|
# LearningSolver calls after_iteration (first time)
|
|
should_repeat = component.iteration_cb(solver, instance, None)
|
|
assert should_repeat
|
|
|
|
# Should ask internal solver to verify if constraints in the pool are
|
|
# satisfied and add the ones that are not
|
|
internal.is_constraint_satisfied.assert_called_once_with("<c3>", tol=1.0)
|
|
internal.is_constraint_satisfied.reset_mock()
|
|
internal.add_constraint.assert_called_once_with("<c3>")
|
|
internal.add_constraint.reset_mock()
|
|
|
|
# LearningSolver calls after_iteration (second time)
|
|
should_repeat = component.iteration_cb(solver, instance, None)
|
|
assert not should_repeat
|
|
|
|
# The lazy constraint pool should be empty by now, so no calls should be made
|
|
internal.is_constraint_satisfied.assert_not_called()
|
|
internal.add_constraint.assert_not_called()
|
|
|
|
# LearningSolver calls after_solve_mip
|
|
component.after_solve_mip(
|
|
solver=solver,
|
|
instance=instance,
|
|
model=None,
|
|
stats=stats,
|
|
features=features,
|
|
training_data=sample,
|
|
)
|
|
|
|
# Should update training sample
|
|
assert sample["LazyStatic: Enforced"] == {"c1", "c2", "c3", "c4"}
|
|
|
|
# Should update stats
|
|
assert stats["LazyStatic: Removed"] == 1
|
|
assert stats["LazyStatic: Kept"] == 3
|
|
assert stats["LazyStatic: Restored"] == 1
|
|
assert stats["LazyStatic: Iterations"] == 1
|
|
|
|
|
|
def test_sample_predict(
|
|
features: Features,
|
|
sample: TrainingSample,
|
|
) -> None:
|
|
comp = StaticLazyConstraintsComponent()
|
|
comp.thresholds["type-a"] = MinProbabilityThreshold([0.5, 0.5])
|
|
comp.thresholds["type-b"] = MinProbabilityThreshold([0.5, 0.5])
|
|
comp.classifiers["type-a"] = Mock(spec=Classifier)
|
|
comp.classifiers["type-a"].predict_proba = lambda _: np.array( # type:ignore
|
|
[
|
|
[0.0, 1.0], # c1
|
|
[0.0, 0.9], # c2
|
|
[0.9, 0.1], # c3
|
|
]
|
|
)
|
|
comp.classifiers["type-b"] = Mock(spec=Classifier)
|
|
comp.classifiers["type-b"].predict_proba = lambda _: np.array( # type:ignore
|
|
[
|
|
[0.0, 1.0], # c4
|
|
]
|
|
)
|
|
pred = comp.sample_predict(features, sample)
|
|
assert pred == ["c1", "c2", "c4"]
|
|
|
|
|
|
def test_fit_xy() -> None:
|
|
x = cast(
|
|
Dict[Hashable, np.ndarray],
|
|
{
|
|
"type-a": np.array([[1.0, 1.0], [1.0, 2.0], [1.0, 3.0]]),
|
|
"type-b": np.array([[1.0, 4.0, 0.0]]),
|
|
},
|
|
)
|
|
y = cast(
|
|
Dict[Hashable, np.ndarray],
|
|
{
|
|
"type-a": np.array([[False, True], [False, True], [True, False]]),
|
|
"type-b": np.array([[False, True]]),
|
|
},
|
|
)
|
|
clf: Classifier = Mock(spec=Classifier)
|
|
thr: Threshold = Mock(spec=Threshold)
|
|
clf.clone = Mock(side_effect=lambda: Mock(spec=Classifier)) # type: ignore
|
|
thr.clone = Mock(side_effect=lambda: Mock(spec=Threshold)) # type: ignore
|
|
comp = StaticLazyConstraintsComponent(
|
|
classifier=clf,
|
|
threshold=thr,
|
|
)
|
|
comp.fit_xy(x, y)
|
|
assert clf.clone.call_count == 2
|
|
clf_a = comp.classifiers["type-a"]
|
|
clf_b = comp.classifiers["type-b"]
|
|
assert clf_a.fit.call_count == 1 # type: ignore
|
|
assert clf_b.fit.call_count == 1 # type: ignore
|
|
assert_array_equal(clf_a.fit.call_args[0][0], x["type-a"]) # type: ignore
|
|
assert_array_equal(clf_b.fit.call_args[0][0], x["type-b"]) # type: ignore
|
|
assert thr.clone.call_count == 2
|
|
thr_a = comp.thresholds["type-a"]
|
|
thr_b = comp.thresholds["type-b"]
|
|
assert thr_a.fit.call_count == 1 # type: ignore
|
|
assert thr_b.fit.call_count == 1 # type: ignore
|
|
assert thr_a.fit.call_args[0][0] == clf_a # type: ignore
|
|
assert thr_b.fit.call_args[0][0] == clf_b # type: ignore
|
|
|
|
|
|
def test_sample_xy(
|
|
features: Features,
|
|
sample: TrainingSample,
|
|
) -> None:
|
|
x_expected = {
|
|
"type-a": [[1.0, 1.0], [1.0, 2.0], [1.0, 3.0]],
|
|
"type-b": [[1.0, 4.0, 0.0]],
|
|
}
|
|
y_expected = {
|
|
"type-a": [[False, True], [False, True], [True, False]],
|
|
"type-b": [[False, True]],
|
|
}
|
|
xy = StaticLazyConstraintsComponent.sample_xy(features, sample)
|
|
assert xy is not None
|
|
x_actual, y_actual = xy
|
|
assert x_actual == x_expected
|
|
assert y_actual == y_expected
|