You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
250 lines
6.9 KiB
250 lines
6.9 KiB
#!/usr/bin/env python
|
|
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
"""MIPLearn Benchmark Scripts
|
|
|
|
Usage:
|
|
benchmark.py train [options] <challenge>
|
|
benchmark.py test-baseline [options] <challenge>
|
|
benchmark.py test-ml [options] <challenge>
|
|
benchmark.py charts <challenge>
|
|
|
|
Options:
|
|
-h --help Show this screen
|
|
--jobs=<n> Number of instances to solve simultaneously [default: 5]
|
|
--train-time-limit=<n> Solver time limit during training in seconds [default: 3600]
|
|
--test-time-limit=<n> Solver time limit during test in seconds [default: 900]
|
|
--solver-threads=<n> Number of threads the solver is allowed to use [default: 4]
|
|
--solver=<s> Internal MILP solver to use [default: gurobi]
|
|
"""
|
|
import importlib
|
|
import logging
|
|
import pathlib
|
|
import pickle
|
|
import sys
|
|
import os
|
|
import gzip
|
|
import glob
|
|
|
|
from docopt import docopt
|
|
from numpy import median
|
|
from pathlib import Path
|
|
|
|
from miplearn import (
|
|
LearningSolver,
|
|
BenchmarkRunner,
|
|
setup_logger,
|
|
)
|
|
|
|
setup_logger()
|
|
logging.getLogger("gurobipy").setLevel(logging.ERROR)
|
|
logging.getLogger("pyomo.core").setLevel(logging.ERROR)
|
|
logger = logging.getLogger("benchmark")
|
|
|
|
args = docopt(__doc__)
|
|
basepath = args["<challenge>"]
|
|
n_jobs = int(args["--jobs"])
|
|
n_threads = int(args["--solver-threads"])
|
|
train_time_limit = int(args["--train-time-limit"])
|
|
test_time_limit = int(args["--test-time-limit"])
|
|
internal_solver = args["--solver"]
|
|
|
|
|
|
def write_pickle_gz(obj, filename):
|
|
logger.info(f"Writing: {filename}")
|
|
os.makedirs(os.path.dirname(filename), exist_ok=True)
|
|
with gzip.GzipFile(filename, "wb") as file:
|
|
pickle.dump(obj, file)
|
|
|
|
|
|
def read_pickle_gz(filename):
|
|
logger.info(f"Reading: {filename}")
|
|
with gzip.GzipFile(filename, "rb") as file:
|
|
return pickle.load(file)
|
|
|
|
|
|
def write_multiple(objs, dirname):
|
|
for (i, obj) in enumerate(objs):
|
|
write_pickle_gz(obj, f"{dirname}/{i:05d}.pkl.gz")
|
|
|
|
|
|
def train():
|
|
problem_name, challenge_name = args["<challenge>"].split("/")
|
|
pkg = importlib.import_module(f"miplearn.problems.{problem_name}")
|
|
challenge = getattr(pkg, challenge_name)()
|
|
|
|
if not os.path.isdir(f"{basepath}/train"):
|
|
write_multiple(challenge.training_instances, f"{basepath}/train")
|
|
write_multiple(challenge.test_instances, f"{basepath}/test")
|
|
|
|
done_filename = f"{basepath}/train/done"
|
|
if not os.path.isfile(done_filename):
|
|
train_instances = glob.glob(f"{basepath}/train/*.gz")
|
|
solver = LearningSolver(
|
|
time_limit=train_time_limit,
|
|
solver=internal_solver,
|
|
threads=n_threads,
|
|
)
|
|
solver.parallel_solve(train_instances, n_jobs=n_jobs)
|
|
Path(done_filename).touch(exist_ok=True)
|
|
|
|
|
|
def test_baseline():
|
|
test_instances = glob.glob(f"{basepath}/test/*.gz")
|
|
csv_filename = f"{basepath}/benchmark_baseline.csv"
|
|
if not os.path.isfile(csv_filename):
|
|
solvers = {
|
|
"baseline": LearningSolver(
|
|
time_limit=test_time_limit,
|
|
solver=internal_solver,
|
|
threads=n_threads,
|
|
),
|
|
}
|
|
benchmark = BenchmarkRunner(solvers)
|
|
benchmark.parallel_solve(test_instances, n_jobs=n_jobs)
|
|
benchmark.save_results(csv_filename)
|
|
|
|
|
|
def test_ml():
|
|
test_instances = glob.glob(f"{basepath}/test/*.gz")
|
|
train_instances = glob.glob(f"{basepath}/train/*.gz")
|
|
csv_filename = f"{basepath}/benchmark_ml.csv"
|
|
if not os.path.isfile(csv_filename):
|
|
solvers = {
|
|
"ml-exact": LearningSolver(
|
|
time_limit=test_time_limit,
|
|
solver=internal_solver,
|
|
threads=n_threads,
|
|
),
|
|
"ml-heuristic": LearningSolver(
|
|
time_limit=test_time_limit,
|
|
solver=internal_solver,
|
|
threads=n_threads,
|
|
mode="heuristic",
|
|
),
|
|
}
|
|
benchmark = BenchmarkRunner(solvers)
|
|
benchmark.fit(train_instances)
|
|
benchmark.parallel_solve(test_instances, n_jobs=n_jobs)
|
|
benchmark.save_results(csv_filename)
|
|
|
|
|
|
def charts():
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
|
|
sns.set_style("whitegrid")
|
|
sns.set_palette("Blues_r")
|
|
benchmark = BenchmarkRunner({})
|
|
benchmark.load_results(f"{basepath}/benchmark_baseline.csv")
|
|
benchmark.load_results(f"{basepath}/benchmark_ml.csv")
|
|
results = benchmark.raw_results()
|
|
results["Gap (%)"] = results["Gap"] * 100.0
|
|
|
|
sense = results.loc[0, "Sense"]
|
|
if (sense == "min").any():
|
|
primal_column = "Relative upper bound"
|
|
obj_column = "Upper bound"
|
|
predicted_obj_column = "Predicted UB"
|
|
else:
|
|
primal_column = "Relative lower bound"
|
|
obj_column = "Lower bound"
|
|
predicted_obj_column = "Predicted LB"
|
|
|
|
palette = {"baseline": "#9b59b6", "ml-exact": "#3498db", "ml-heuristic": "#95a5a6"}
|
|
fig, (ax1, ax2, ax3, ax4) = plt.subplots(
|
|
nrows=1,
|
|
ncols=4,
|
|
figsize=(12, 4),
|
|
gridspec_kw={"width_ratios": [2, 1, 1, 2]},
|
|
)
|
|
|
|
# Wallclock time
|
|
sns.stripplot(
|
|
x="Solver",
|
|
y="Wallclock time",
|
|
data=results,
|
|
ax=ax1,
|
|
jitter=0.25,
|
|
palette=palette,
|
|
size=4.0,
|
|
)
|
|
sns.barplot(
|
|
x="Solver",
|
|
y="Wallclock time",
|
|
data=results,
|
|
ax=ax1,
|
|
errwidth=0.0,
|
|
alpha=0.4,
|
|
palette=palette,
|
|
estimator=median,
|
|
)
|
|
ax1.set(ylabel="Wallclock time (s)")
|
|
|
|
# Gap
|
|
ax2.set_ylim(-0.5, 5.5)
|
|
sns.stripplot(
|
|
x="Solver",
|
|
y="Gap (%)",
|
|
jitter=0.25,
|
|
data=results[results["Solver"] != "ml-heuristic"],
|
|
ax=ax2,
|
|
palette=palette,
|
|
size=4.0,
|
|
)
|
|
|
|
# Relative primal bound
|
|
ax3.set_ylim(0.95, 1.05)
|
|
sns.stripplot(
|
|
x="Solver",
|
|
y=primal_column,
|
|
jitter=0.25,
|
|
data=results[results["Solver"] == "ml-heuristic"],
|
|
ax=ax3,
|
|
palette=palette,
|
|
)
|
|
sns.scatterplot(
|
|
x=obj_column,
|
|
y=predicted_obj_column,
|
|
hue="Solver",
|
|
data=results[results["Solver"] == "ml-exact"],
|
|
ax=ax4,
|
|
palette=palette,
|
|
)
|
|
|
|
# Predicted vs actual primal bound
|
|
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
|
|
ax4.plot(
|
|
[-1e10, 1e10],
|
|
[-1e10, 1e10],
|
|
ls="-",
|
|
color="#cccccc",
|
|
)
|
|
ax4.set_xlim(xlim)
|
|
ax4.set_ylim(ylim)
|
|
ax4.get_legend().remove()
|
|
ax4.set(
|
|
ylabel="Predicted value",
|
|
xlabel="Actual value",
|
|
)
|
|
|
|
fig.tight_layout()
|
|
plt.savefig(
|
|
f"{basepath}/performance.png",
|
|
bbox_inches="tight",
|
|
dpi=150,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
if args["train"]:
|
|
train()
|
|
if args["test-baseline"]:
|
|
test_baseline()
|
|
if args["test-ml"]:
|
|
test_ml()
|
|
if args["charts"]:
|
|
charts()
|