You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
238 lines
8.4 KiB
238 lines
8.4 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
import random
|
|
from copy import deepcopy
|
|
|
|
import numpy as np
|
|
from tqdm import tqdm
|
|
|
|
from miplearn.classifiers.counting import CountingClassifier
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.component import Component
|
|
from miplearn.components.steps.drop_redundant import DropRedundantInequalitiesStep
|
|
from miplearn.extractors import InstanceIterator
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class ConvertTightIneqsIntoEqsStep(Component):
|
|
"""
|
|
Component that predicts which inequality constraints are likely to be binding in
|
|
the LP relaxation of the problem and converts them into equality constraints.
|
|
|
|
This component always makes sure that the conversion process does not affect the
|
|
feasibility of the problem. It can also, optionally, make sure that it does not affect
|
|
the optimality, but this may be expensive.
|
|
|
|
This component does not work on MIPs. All integrality constraints must be relaxed
|
|
before this component is used.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
classifier=CountingClassifier(),
|
|
threshold=0.95,
|
|
slack_tolerance=0.0,
|
|
check_optimality=False,
|
|
):
|
|
self.classifiers = {}
|
|
self.classifier_prototype = classifier
|
|
self.threshold = threshold
|
|
self.slack_tolerance = slack_tolerance
|
|
self.check_optimality = check_optimality
|
|
self.converted = []
|
|
self.original_sense = {}
|
|
|
|
def before_solve_mip(self, solver, instance, _):
|
|
logger.info("Predicting tight LP constraints...")
|
|
x, constraints = DropRedundantInequalitiesStep.x(
|
|
instance,
|
|
constraint_ids=solver.internal_solver.get_constraint_ids(),
|
|
)
|
|
y = self.predict(x)
|
|
|
|
self.n_converted = 0
|
|
self.n_restored = 0
|
|
self.n_kept = 0
|
|
self.n_infeasible_iterations = 0
|
|
self.n_suboptimal_iterations = 0
|
|
for category in y.keys():
|
|
for i in range(len(y[category])):
|
|
if y[category][i][0] == 1:
|
|
cid = constraints[category][i]
|
|
s = solver.internal_solver.get_constraint_sense(cid)
|
|
self.original_sense[cid] = s
|
|
solver.internal_solver.set_constraint_sense(cid, "=")
|
|
self.converted += [cid]
|
|
self.n_converted += 1
|
|
else:
|
|
self.n_kept += 1
|
|
|
|
logger.info(f"Converted {self.n_converted} inequalities")
|
|
|
|
def after_solve_mip(
|
|
self,
|
|
solver,
|
|
instance,
|
|
model,
|
|
stats,
|
|
training_data,
|
|
):
|
|
if "slacks" not in training_data.keys():
|
|
training_data["slacks"] = solver.internal_solver.get_inequality_slacks()
|
|
stats["ConvertTight: Kept"] = self.n_kept
|
|
stats["ConvertTight: Converted"] = self.n_converted
|
|
stats["ConvertTight: Restored"] = self.n_restored
|
|
stats["ConvertTight: Inf iterations"] = self.n_infeasible_iterations
|
|
stats["ConvertTight: Subopt iterations"] = self.n_suboptimal_iterations
|
|
|
|
def fit(self, training_instances):
|
|
logger.debug("Extracting x and y...")
|
|
x = self.x(training_instances)
|
|
y = self.y(training_instances)
|
|
logger.debug("Fitting...")
|
|
for category in tqdm(x.keys(), desc="Fit (rlx:conv_ineqs)"):
|
|
if category not in self.classifiers:
|
|
self.classifiers[category] = deepcopy(self.classifier_prototype)
|
|
self.classifiers[category].fit(x[category], y[category])
|
|
|
|
@staticmethod
|
|
def _x_train(instances):
|
|
x = {}
|
|
for instance in tqdm(
|
|
InstanceIterator(instances),
|
|
desc="Extract (drop:x)",
|
|
disable=len(instances) < 5,
|
|
):
|
|
for training_data in instance.training_data:
|
|
cids = training_data["slacks"].keys()
|
|
for cid in cids:
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in x:
|
|
x[category] = []
|
|
x[category] += [instance.get_constraint_features(cid)]
|
|
for category in x.keys():
|
|
x[category] = np.array(x[category])
|
|
return x
|
|
|
|
def x(self, instances):
|
|
return self._x_train(instances)
|
|
|
|
def y(self, instances):
|
|
y = {}
|
|
for instance in tqdm(
|
|
InstanceIterator(instances),
|
|
desc="Extract (rlx:conv_ineqs:y)",
|
|
disable=len(instances) < 5,
|
|
):
|
|
for (cid, slack) in instance.training_data[0]["slacks"].items():
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in y:
|
|
y[category] = []
|
|
if 0 <= slack <= self.slack_tolerance:
|
|
y[category] += [[False, True]]
|
|
else:
|
|
y[category] += [[True, False]]
|
|
for category in y.keys():
|
|
y[category] = np.array(y[category], dtype=np.bool8)
|
|
return y
|
|
|
|
def predict(self, x):
|
|
y = {}
|
|
for (category, x_cat) in x.items():
|
|
if category not in self.classifiers:
|
|
continue
|
|
y[category] = []
|
|
x_cat = np.array(x_cat)
|
|
proba = self.classifiers[category].predict_proba(x_cat)
|
|
for i in range(len(proba)):
|
|
if proba[i][1] >= self.threshold:
|
|
y[category] += [[1]]
|
|
else:
|
|
y[category] += [[0]]
|
|
return y
|
|
|
|
def evaluate(self, instance):
|
|
x = self.x([instance])
|
|
y_true = self.y([instance])
|
|
y_pred = self.predict(x)
|
|
tp, tn, fp, fn = 0, 0, 0, 0
|
|
for category in y_true.keys():
|
|
for i in range(len(y_true[category])):
|
|
if y_pred[category][i][0] == 1:
|
|
if y_true[category][i][0] == 1:
|
|
tp += 1
|
|
else:
|
|
fp += 1
|
|
else:
|
|
if y_true[category][i][0] == 1:
|
|
fn += 1
|
|
else:
|
|
tn += 1
|
|
return classifier_evaluation_dict(tp, tn, fp, fn)
|
|
|
|
def iteration_cb(self, solver, instance, model):
|
|
is_infeasible, is_suboptimal = False, False
|
|
restored = []
|
|
|
|
def check_pi(msense, csense, pi):
|
|
if csense == "=":
|
|
return True
|
|
if msense == "max":
|
|
if csense == "<":
|
|
return pi >= 0
|
|
else:
|
|
return pi <= 0
|
|
else:
|
|
if csense == ">":
|
|
return pi >= 0
|
|
else:
|
|
return pi <= 0
|
|
|
|
def restore(cid):
|
|
nonlocal restored
|
|
csense = self.original_sense[cid]
|
|
solver.internal_solver.set_constraint_sense(cid, csense)
|
|
restored += [cid]
|
|
|
|
if solver.internal_solver.is_infeasible():
|
|
for cid in self.converted:
|
|
pi = solver.internal_solver.get_dual(cid)
|
|
if abs(pi) > 0:
|
|
is_infeasible = True
|
|
restore(cid)
|
|
elif self.check_optimality:
|
|
random.shuffle(self.converted)
|
|
n_restored = 0
|
|
for cid in self.converted:
|
|
if n_restored >= 100:
|
|
break
|
|
pi = solver.internal_solver.get_dual(cid)
|
|
csense = self.original_sense[cid]
|
|
msense = solver.internal_solver.get_sense()
|
|
if not check_pi(msense, csense, pi):
|
|
is_suboptimal = True
|
|
restore(cid)
|
|
n_restored += 1
|
|
|
|
for cid in restored:
|
|
self.converted.remove(cid)
|
|
|
|
if len(restored) > 0:
|
|
self.n_restored += len(restored)
|
|
if is_infeasible:
|
|
self.n_infeasible_iterations += 1
|
|
if is_suboptimal:
|
|
self.n_suboptimal_iterations += 1
|
|
logger.info(f"Restored {len(restored)} inequalities")
|
|
return True
|
|
else:
|
|
return False
|