You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/warmstart.py

203 lines
7.6 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from . import Component
from .transformers import PerVariableTransformer
from .extractors import *
from abc import ABC, abstractmethod
from copy import deepcopy
import numpy as np
from sklearn.pipeline import make_pipeline
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_val_score
from sklearn.neighbors import KNeighborsClassifier
from tqdm.auto import tqdm
class WarmStartPredictor(ABC):
def __init__(self, thr_clip=[0.50, 0.50]):
self.models = [None, None]
self.thr_clip = thr_clip
def fit(self, x_train, y_train):
assert isinstance(x_train, np.ndarray)
assert isinstance(y_train, np.ndarray)
y_train = y_train.astype(int)
assert y_train.shape[0] == x_train.shape[0]
assert y_train.shape[1] == 2
for i in [0,1]:
self.models[i] = self._fit(x_train, y_train[:, i], i)
def predict(self, x_test):
assert isinstance(x_test, np.ndarray)
y_pred = np.zeros((x_test.shape[0], 2))
for i in [0,1]:
if isinstance(self.models[i], int):
y_pred[:, i] = self.models[i]
else:
y = self.models[i].predict_proba(x_test)[:,1]
y[y < self.thr_clip[i]] = 0.
y[y > 0.] = 1.
y_pred[:, i] = y
return y_pred.astype(int)
@abstractmethod
def _fit(self, x_train, y_train, label):
pass
class LogisticWarmStartPredictor(WarmStartPredictor):
def __init__(self,
min_samples=100,
thr_fix=[0.99, 0.99],
thr_balance=[0.80, 0.80],
thr_alpha=[0.50, 0.50],
):
super().__init__()
self.min_samples = min_samples
self.thr_fix = thr_fix
self.thr_balance = thr_balance
self.thr_alpha = thr_alpha
def _fit(self, x_train, y_train, label):
y_train_avg = np.average(y_train)
# If number of samples is too small, don't predict anything.
if x_train.shape[0] < self.min_samples:
return 0
# If vast majority of observations are true, always return true.
if y_train_avg > self.thr_fix[label]:
return 1
# If dataset is not balanced enough, don't predict anything.
if y_train_avg < (1 - self.thr_balance[label]) or y_train_avg > self.thr_balance[label]:
return 0
reg = make_pipeline(StandardScaler(), LogisticRegression())
reg_score = np.mean(cross_val_score(reg, x_train, y_train, cv=5))
dummy_score = max(y_train_avg, 1 - y_train_avg)
reg_thr = 1. * self.thr_alpha[label] + dummy_score * (1 - self.thr_alpha[label])
# If cross-validation score is too low, don't predict anything.
if reg_score < reg_thr:
return 0
reg.fit(x_train, y_train.astype(int))
return reg
class KnnWarmStartPredictor(WarmStartPredictor):
def __init__(self, k=50,
thr_clip=[0.90, 0.90],
thr_fix=[0.99, 0.99],
):
super().__init__(thr_clip=thr_clip)
self.k = k
self.thr_fix = thr_fix
def _fit(self, x_train, y_train, label):
y_train_avg = np.average(y_train)
# If number of training samples is too small, don't predict anything.
if x_train.shape[0] < self.k:
return 0
# If vast majority of observations are true, always return true.
if y_train_avg > self.thr_fix[label]:
return 1
# If vast majority of observations are false, always return false.
if y_train_avg < (1 - self.thr_fix[label]):
return 0
knn = KNeighborsClassifier(n_neighbors=self.k)
knn.fit(x_train, y_train)
return knn
class WarmStartComponent(Component):
def __init__(self,
predictor_prototype=KnnWarmStartPredictor(),
mode="exact",
):
self.mode = mode
self.transformer = PerVariableTransformer()
self.x_train = {}
self.y_train = {}
self.predictors = {}
self.predictor_prototype = predictor_prototype
def before_solve(self, solver, instance, model):
# Build x_test
x_test = CombinedExtractor([UserFeaturesExtractor(),
SolutionExtractor(),
]).extract([instance], [model])
# Update self.x_train
self.x_train = Extractor.merge([self.x_train, x_test],
vertical=True)
# Predict solutions
var_split = Extractor.split_variables(instance, model)
for category in var_split.keys():
var_index_pairs = var_split[category]
if category not in self.predictors.keys():
continue
ws = self.predictors[category].predict(x_test[category])
assert ws.shape == (len(var_index_pairs), 2)
for i in range(len(var_index_pairs)):
var, index = var_index_pairs[i]
if self.mode == "heuristic":
if ws[i,0] == 1:
var[index].fix(0)
if solver.is_persistent:
solver.internal_solver.update_var(var[index])
elif ws[i,1] == 1:
var[index].fix(1)
if solver.is_persistent:
solver.internal_solver.update_var(var[index])
else:
if ws[i,0] == 1:
var[index].value = 0
elif ws[i,1] == 1:
var[index].value = 1
def after_solve(self, solver, instance, model):
y_test = SolutionExtractor().extract([instance], [model])
self.y_train = Extractor.merge([self.y_train, y_test], vertical=True)
def fit(self, solver, n_jobs=1):
for category in tqdm(self.x_train.keys(), desc="Warm start"):
x_train = self.x_train[category]
y_train = self.y_train[category]
self.predictors[category] = deepcopy(self.predictor_prototype)
self.predictors[category].fit(x_train, y_train)
def merge(self, other_components):
# Merge x_train and y_train
keys = set(self.x_train.keys())
for comp in other_components:
keys = keys.union(set(comp.x_train.keys()))
for key in keys:
x_train_submatrices = [comp.x_train[key]
for comp in other_components
if key in comp.x_train.keys()]
y_train_submatrices = [comp.y_train[key]
for comp in other_components
if key in comp.y_train.keys()]
if key in self.x_train.keys():
x_train_submatrices += [self.x_train[key]]
y_train_submatrices += [self.y_train[key]]
self.x_train[key] = np.vstack(x_train_submatrices)
self.y_train[key] = np.vstack(y_train_submatrices)
# Merge trained predictors
for comp in other_components:
for key in comp.predictors.keys():
if key not in self.predictors.keys():
self.predictors[key] = comp.predictors[key]