You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/components/lazy_static.py

133 lines
5.0 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import sys
from copy import deepcopy
from miplearn.classifiers.counting import CountingClassifier
from .component import Component
from ..extractors import *
logger = logging.getLogger(__name__)
class LazyConstraint:
def __init__(self, cid, obj):
self.cid = cid
self.obj = obj
class StaticLazyConstraintsComponent(Component):
def __init__(self,
classifier=CountingClassifier(),
threshold=0.05):
self.threshold = threshold
self.classifier_prototype = classifier
self.classifiers = {}
self.pool = []
def before_solve(self, solver, instance, model):
instance.found_violated_lazy_constraints = []
if instance.has_static_lazy_constraints():
self._extract_and_predict_static(solver, instance)
def after_solve(self, solver, instance, model, results):
pass
def after_iteration(self, solver, instance, model):
logger.debug("Finding violated (static) lazy constraints...")
n_added = 0
for c in self.pool:
if not solver.internal_solver.is_constraint_satisfied(c.obj):
self.pool.remove(c)
solver.internal_solver.add_constraint(c.obj)
instance.found_violated_lazy_constraints += [c.cid]
n_added += 1
if n_added > 0:
logger.debug(" %d violations found" % n_added)
return True
else:
return False
def fit(self, training_instances):
logger.debug("Extracting x and y...")
x = self.x(training_instances)
y = self.y(training_instances)
logger.debug("Fitting...")
for category in tqdm(x.keys(),
desc="Fit (lazy)",
disable=not sys.stdout.isatty()):
if category not in self.classifiers:
self.classifiers[category] = deepcopy(self.classifier_prototype)
self.classifiers[category].fit(x[category], y[category])
def predict(self, instance):
pass
def evaluate(self, instances):
pass
def _extract_and_predict_static(self, solver, instance):
x = {}
constraints = {}
for cid in solver.internal_solver.get_constraint_names():
if instance.is_constraint_lazy(cid):
category = instance.get_lazy_constraint_category(cid)
if category not in self.classifiers:
continue
if category not in x:
x[category] = []
constraints[category] = []
x[category] += [instance.get_lazy_constraint_features(cid)]
c = LazyConstraint(cid=cid,
obj=solver.internal_solver.extract_constraint(cid))
constraints[category] += [c]
self.pool.append(c)
for (category, x_values) in x.items():
if isinstance(x_values[0], np.ndarray):
x[category] = np.array(x_values)
proba = self.classifiers[category].predict_proba(x[category])
for i in range(len(proba)):
if proba[i][1] > self.threshold:
c = constraints[category][i]
self.pool.remove(c)
solver.internal_solver.add_constraint(c.obj)
instance.found_violated_lazy_constraints += [c.cid]
def _collect_constraints(self, train_instances):
constraints = {}
for instance in train_instances:
for cid in instance.found_violated_lazy_constraints:
category = instance.get_lazy_constraint_category(cid)
if category not in constraints:
constraints[category] = set()
constraints[category].add(cid)
for (category, cids) in constraints.items():
constraints[category] = sorted(list(cids))
return constraints
def x(self, train_instances):
result = {}
constraints = self._collect_constraints(train_instances)
for (category, cids) in constraints.items():
result[category] = []
for instance in train_instances:
for cid in cids:
result[category].append(instance.get_lazy_constraint_features(cid))
return result
def y(self, train_instances):
result = {}
constraints = self._collect_constraints(train_instances)
for (category, cids) in constraints.items():
result[category] = []
for instance in train_instances:
for cid in cids:
if cid in instance.found_violated_lazy_constraints:
result[category].append([0, 1])
else:
result[category].append([1, 0])
return result