You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
6.6 KiB
184 lines
6.6 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from unittest.mock import Mock, call
|
|
|
|
from miplearn import (StaticLazyConstraintsComponent,
|
|
LearningSolver,
|
|
Instance,
|
|
InternalSolver)
|
|
from miplearn.classifiers import Classifier
|
|
|
|
|
|
def test_usage_with_solver():
|
|
solver = Mock(spec=LearningSolver)
|
|
internal = solver.internal_solver = Mock(spec=InternalSolver)
|
|
internal.get_constraint_names = Mock(return_value=["c1", "c2", "c3", "c4"])
|
|
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
|
|
internal.is_constraint_satisfied = Mock(return_value=False)
|
|
|
|
instance = Mock(spec=Instance)
|
|
instance.has_static_lazy_constraints = Mock(return_value=True)
|
|
instance.is_constraint_lazy = Mock(side_effect=lambda cid: {
|
|
"c1": False,
|
|
"c2": True,
|
|
"c3": True,
|
|
"c4": True,
|
|
}[cid])
|
|
instance.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
|
"c2": [1.0, 0.0],
|
|
"c3": [0.5, 0.5],
|
|
"c4": [1.0],
|
|
}[cid])
|
|
instance.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
|
"c2": "type-a",
|
|
"c3": "type-a",
|
|
"c4": "type-b",
|
|
}[cid])
|
|
|
|
component = StaticLazyConstraintsComponent(threshold=0.90)
|
|
component.classifiers = {
|
|
"type-a": Mock(spec=Classifier),
|
|
"type-b": Mock(spec=Classifier),
|
|
}
|
|
component.classifiers["type-a"].predict_proba = \
|
|
Mock(return_value=[
|
|
[0.20, 0.80],
|
|
[0.05, 0.95],
|
|
])
|
|
component.classifiers["type-b"].predict_proba = \
|
|
Mock(return_value=[
|
|
[0.02, 0.98],
|
|
])
|
|
|
|
# LearningSolver calls before_solve
|
|
component.before_solve(solver, instance, None)
|
|
|
|
# Should ask if instance has static lazy constraints
|
|
instance.has_static_lazy_constraints.assert_called_once()
|
|
|
|
# Should ask internal solver for a list of constraints in the model
|
|
internal.get_constraint_names.assert_called_once()
|
|
|
|
# Should ask if each constraint in the model is lazy
|
|
instance.is_constraint_lazy.assert_has_calls([
|
|
call("c1"), call("c2"), call("c3"), call("c4"),
|
|
])
|
|
|
|
# For the lazy ones, should ask for features
|
|
instance.get_lazy_constraint_features.assert_has_calls([
|
|
call("c2"), call("c3"), call("c4"),
|
|
])
|
|
|
|
# Should also ask for categories
|
|
assert instance.get_lazy_constraint_category.call_count == 3
|
|
instance.get_lazy_constraint_category.assert_has_calls([
|
|
call("c2"), call("c3"), call("c4"),
|
|
])
|
|
|
|
# Should ask internal solver to remove constraints identified as lazy
|
|
assert internal.extract_constraint.call_count == 3
|
|
internal.extract_constraint.assert_has_calls([
|
|
call("c2"), call("c3"), call("c4"),
|
|
])
|
|
|
|
# Should ask ML to predict whether each lazy constraint should be enforced
|
|
component.classifiers["type-a"].predict_proba.assert_called_once_with([[1.0, 0.0], [0.5, 0.5]])
|
|
component.classifiers["type-b"].predict_proba.assert_called_once_with([[1.0]])
|
|
|
|
# For the ones that should be enforced, should ask solver to re-add them
|
|
# to the formulation. The remaining ones should remain in the pool.
|
|
assert internal.add_constraint.call_count == 2
|
|
internal.add_constraint.assert_has_calls([
|
|
call("<c3>"), call("<c4>"),
|
|
])
|
|
internal.add_constraint.reset_mock()
|
|
|
|
# LearningSolver calls after_iteration (first time)
|
|
should_repeat = component.after_iteration(solver, instance, None)
|
|
assert should_repeat
|
|
|
|
# Should ask internal solver to verify if constraints in the pool are
|
|
# satisfied and add the ones that are not
|
|
internal.is_constraint_satisfied.assert_called_once_with("<c2>")
|
|
internal.is_constraint_satisfied.reset_mock()
|
|
internal.add_constraint.assert_called_once_with("<c2>")
|
|
internal.add_constraint.reset_mock()
|
|
|
|
# LearningSolver calls after_iteration (second time)
|
|
should_repeat = component.after_iteration(solver, instance, None)
|
|
assert not should_repeat
|
|
|
|
# The lazy constraint pool should be empty by now, so no calls should be made
|
|
internal.is_constraint_satisfied.assert_not_called()
|
|
internal.add_constraint.assert_not_called()
|
|
|
|
# Should update instance object
|
|
assert instance.found_violated_lazy_constraints == ["c3", "c4", "c2"]
|
|
|
|
|
|
def test_fit():
|
|
instance_1 = Mock(spec=Instance)
|
|
instance_1.found_violated_lazy_constraints = ["c1", "c2", "c4", "c5"]
|
|
instance_1.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
|
"c1": "type-a",
|
|
"c2": "type-a",
|
|
"c3": "type-a",
|
|
"c4": "type-b",
|
|
"c5": "type-b",
|
|
}[cid])
|
|
instance_1.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
|
"c1": [1, 1],
|
|
"c2": [1, 2],
|
|
"c3": [1, 3],
|
|
"c4": [1, 4, 0],
|
|
"c5": [1, 5, 0],
|
|
}[cid])
|
|
|
|
instance_2 = Mock(spec=Instance)
|
|
instance_2.found_violated_lazy_constraints = ["c2", "c3", "c4"]
|
|
instance_2.get_lazy_constraint_category = Mock(side_effect=lambda cid: {
|
|
"c1": "type-a",
|
|
"c2": "type-a",
|
|
"c3": "type-a",
|
|
"c4": "type-b",
|
|
"c5": "type-b",
|
|
}[cid])
|
|
instance_2.get_lazy_constraint_features = Mock(side_effect=lambda cid: {
|
|
"c1": [2, 1],
|
|
"c2": [2, 2],
|
|
"c3": [2, 3],
|
|
"c4": [2, 4, 0],
|
|
"c5": [2, 5, 0],
|
|
}[cid])
|
|
|
|
instances = [instance_1, instance_2]
|
|
component = StaticLazyConstraintsComponent()
|
|
component.classifiers = {
|
|
"type-a": Mock(spec=Classifier),
|
|
"type-b": Mock(spec=Classifier),
|
|
}
|
|
|
|
expected_constraints = {
|
|
"type-a": ["c1", "c2", "c3"],
|
|
"type-b": ["c4", "c5"],
|
|
}
|
|
expected_x = {
|
|
"type-a": [[1, 1], [1, 2], [1, 3], [2, 1], [2, 2], [2, 3]],
|
|
"type-b": [[1, 4, 0], [1, 5, 0], [2, 4, 0], [2, 5, 0]]
|
|
}
|
|
expected_y = {
|
|
"type-a": [[0, 1], [0, 1], [1, 0], [1, 0], [0, 1], [0, 1]],
|
|
"type-b": [[0, 1], [0, 1], [0, 1], [1, 0]]
|
|
}
|
|
assert component._collect_constraints(instances) == expected_constraints
|
|
assert component.x(instances) == expected_x
|
|
assert component.y(instances) == expected_y
|
|
|
|
component.fit(instances)
|
|
component.classifiers["type-a"].fit.assert_called_once_with(expected_x["type-a"],
|
|
expected_y["type-a"])
|
|
component.classifiers["type-b"].fit.assert_called_once_with(expected_x["type-b"],
|
|
expected_y["type-b"])
|