You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers/gurobi.py

224 lines
7.2 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import re
import sys
import logging
from io import StringIO
from . import RedirectOutput
from .internal import InternalSolver
logger = logging.getLogger(__name__)
class GurobiSolver(InternalSolver):
def __init__(self, params=None):
if params is None:
params = {
"LazyConstraints": 1,
"PreCrush": 1,
}
from gurobipy import GRB
self.GRB = GRB
self.instance = None
self.model = None
self.params = params
self._all_vars = None
self._bin_vars = None
def set_instance(self, instance, model=None):
if model is None:
model = instance.to_model()
self.instance = instance
self.model = model
self.model.update()
self._update_vars()
def _update_vars(self):
self._all_vars = {}
self._bin_vars = {}
for var in self.model.getVars():
m = re.search(r"([^[]*)\[(.*)\]", var.varName)
if m is None:
name = var.varName
idx = [0]
else:
name = m.group(1)
idx = tuple(int(k) if k.isdecimal() else k
for k in m.group(2).split(","))
if len(idx) == 1:
idx = idx[0]
if name not in self._all_vars:
self._all_vars[name] = {}
self._all_vars[name][idx] = var
if var.vtype != 'C':
if name not in self._bin_vars:
self._bin_vars[name] = {}
self._bin_vars[name][idx] = var
def _apply_params(self):
for (name, value) in self.params.items():
self.model.setParam(name, value)
def solve_lp(self, tee=False):
self._apply_params()
streams = [StringIO()]
if tee:
streams += [sys.stdout]
for (varname, vardict) in self._bin_vars.items():
for (idx, var) in vardict.items():
var.vtype = self.GRB.CONTINUOUS
var.lb = 0.0
var.ub = 1.0
with RedirectOutput(streams):
self.model.optimize()
for (varname, vardict) in self._bin_vars.items():
for (idx, var) in vardict.items():
var.vtype = self.GRB.BINARY
log = streams[0].getvalue()
return {
"Optimal value": self.model.objVal,
"Log": log
}
def solve(self, tee=False, iteration_cb=None):
total_wallclock_time = 0
total_nodes = 0
streams = [StringIO()]
if tee:
streams += [sys.stdout]
if iteration_cb is None:
iteration_cb = lambda : False
while True:
logger.debug("Solving MIP...")
with RedirectOutput(streams):
self.model.optimize()
total_wallclock_time += self.model.runtime
total_nodes += int(self.model.nodeCount)
should_repeat = iteration_cb()
if not should_repeat:
break
log = streams[0].getvalue()
return {
"Lower bound": self.model.objVal,
"Upper bound": self.model.objBound,
"Wallclock time": total_wallclock_time,
"Nodes": total_nodes,
"Sense": ("min" if self.model.modelSense == 1 else "max"),
"Log": log,
"Warm start value": self._extract_warm_start_value(log),
}
def get_solution(self):
solution = {}
for (varname, vardict) in self._all_vars.items():
solution[varname] = {}
for (idx, var) in vardict.items():
solution[varname][idx] = var.x
return solution
def get_variables(self):
variables = {}
for (varname, vardict) in self._all_vars.items():
variables[varname] = {}
for (idx, var) in vardict.items():
variables[varname] += [idx]
return variables
def add_constraint(self, constraint, name=""):
if type(constraint) is tuple:
lhs, sense, rhs, name = constraint
logger.debug(lhs, sense, rhs)
self.model.addConstr(lhs, sense, rhs, name)
else:
self.model.addConstr(constraint, name=name)
def set_warm_start(self, solution):
count_fixed, count_total = 0, 0
for (varname, vardict) in solution.items():
for (idx, value) in vardict.items():
count_total += 1
if value is not None:
count_fixed += 1
self._all_vars[varname][idx].start = value
logger.info("Setting start values for %d variables (out of %d)" %
(count_fixed, count_total))
def clear_warm_start(self):
for (varname, vardict) in self._all_vars:
for (idx, var) in vardict.items():
var[idx].start = self.GRB.UNDEFINED
def fix(self, solution):
for (varname, vardict) in solution.items():
for (idx, value) in vardict.items():
if value is None:
continue
var = self._all_vars[varname][idx]
var.vtype = self.GRB.CONTINUOUS
var.lb = value
var.ub = value
def get_constraints_ids(self):
self.model.update()
return [c.ConstrName for c in self.model.getConstrs()]
def extract_constraint(self, cid):
constr = self.model.getConstrByName(cid)
cobj = (self.model.getRow(constr),
constr.sense,
constr.RHS,
constr.ConstrName)
self.model.remove(constr)
return cobj
def is_constraint_satisfied(self, cobj, tol=1e-5):
lhs, sense, rhs, name = cobj
lhs_value = lhs.getValue()
if sense == "<":
return lhs_value <= rhs + tol
elif sense == ">":
return lhs_value >= rhs - tol
elif sense == "=":
return abs(rhs - lhs_value) < tol
else:
raise Exception("Unknown sense: %s" % sense)
def set_branching_priorities(self, priorities):
logger.warning("set_branching_priorities not implemented")
def set_threads(self, threads):
self.params["Threads"] = threads
def set_time_limit(self, time_limit):
self.params["TimeLimit"] = time_limit
def set_node_limit(self, node_limit):
self.params["NodeLimit"] = node_limit
def set_gap_tolerance(self, gap_tolerance):
self.params["MIPGap"] = gap_tolerance
def _extract_warm_start_value(self, log):
ws = self.__extract(log, "MIP start with objective ([0-9.e+-]*)")
if ws is not None:
ws = float(ws)
return ws
def __extract(self, log, regexp, default=None):
value = default
for line in log.splitlines():
matches = re.findall(regexp, line)
if len(matches) == 0:
continue
value = matches[0]
return value
def __getstate__(self):
return self.params
def __setstate__(self, state):
self.params = state