You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/benchmark.py

182 lines
7.1 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from copy import deepcopy
import pandas as pd
from tqdm.auto import tqdm
from .solvers.learning import LearningSolver
class BenchmarkRunner:
def __init__(self, solvers):
assert isinstance(solvers, dict)
for solver in solvers.values():
assert isinstance(solver, LearningSolver)
self.solvers = solvers
self.results = None
def solve(self, instances, tee=False):
for (name, solver) in self.solvers.items():
for i in tqdm(range(len((instances)))):
results = solver.solve(deepcopy(instances[i]), tee=tee)
self._push_result(results, solver=solver, name=name, instance=i)
def parallel_solve(self, instances, n_jobs=1, n_trials=1):
instances = instances * n_trials
for (name, solver) in self.solvers.items():
results = solver.parallel_solve(instances,
n_jobs=n_jobs,
label="Solve (%s)" % name)
for i in range(len(instances)):
self._push_result(results[i],
solver=solver,
name=name,
instance=i)
def raw_results(self):
return self.results
def save_results(self, filename):
self.results.to_csv(filename)
def load_results(self, filename):
self.results = pd.read_csv(filename, index_col=0)
def load_state(self, filename):
for (name, solver) in self.solvers.items():
solver.load_state(filename)
def fit(self, training_instances):
for (name, solver) in self.solvers.items():
solver.fit(training_instances)
def _push_result(self, result, solver, name, instance):
if self.results is None:
self.results = pd.DataFrame(columns=["Solver",
"Instance",
"Wallclock Time",
"Lower Bound",
"Upper Bound",
"Gap",
"Nodes",
"Mode",
"Sense",
"Predicted LB",
"Predicted UB",
])
lb = result["Lower bound"]
ub = result["Upper bound"]
gap = (ub - lb) / lb
if "Predicted LB" not in result:
result["Predicted LB"] = float("nan")
result["Predicted UB"] = float("nan")
self.results = self.results.append({
"Solver": name,
"Instance": instance,
"Wallclock Time": result["Wallclock time"],
"Lower Bound": lb,
"Upper Bound": ub,
"Gap": gap,
"Nodes": result["Nodes"],
"Mode": solver.mode,
"Sense": result["Sense"],
"Predicted LB": result["Predicted LB"],
"Predicted UB": result["Predicted UB"],
}, ignore_index=True)
groups = self.results.groupby("Instance")
best_lower_bound = groups["Lower Bound"].transform("max")
best_upper_bound = groups["Upper Bound"].transform("min")
best_gap = groups["Gap"].transform("min")
best_nodes = groups["Nodes"].transform("min")
best_wallclock_time = groups["Wallclock Time"].transform("min")
self.results["Relative Lower Bound"] = \
self.results["Lower Bound"] / best_lower_bound
self.results["Relative Upper Bound"] = \
self.results["Upper Bound"] / best_upper_bound
self.results["Relative Wallclock Time"] = \
self.results["Wallclock Time"] / best_wallclock_time
self.results["Relative Gap"] = \
self.results["Gap"] / best_gap
self.results["Relative Nodes"] = \
self.results["Nodes"] / best_nodes
def save_chart(self, filename):
import matplotlib.pyplot as plt
import seaborn as sns
from numpy import median
sns.set_style("whitegrid")
sns.set_palette("Blues_r")
results = self.raw_results()
results["Gap (%)"] = results["Gap"] * 100.0
sense = results.loc[0, "Sense"]
if sense == "min":
primal_column = "Relative Upper Bound"
obj_column = "Upper Bound"
predicted_obj_column = "Predicted UB"
else:
primal_column = "Relative Lower Bound"
obj_column = "Lower Bound"
predicted_obj_column = "Predicted LB"
fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1,
ncols=4,
figsize=(12,4),
gridspec_kw={'width_ratios': [2, 1, 1, 2]})
# Figure 1: Solver x Wallclock Time
sns.stripplot(x="Solver",
y="Wallclock Time",
data=results,
ax=ax1,
jitter=0.25,
size=4.0,
);
sns.barplot(x="Solver",
y="Wallclock Time",
data=results,
ax=ax1,
errwidth=0.,
alpha=0.4,
estimator=median,
);
ax1.set(ylabel='Wallclock Time (s)')
# Figure 2: Solver x Gap (%)
ax2.set_ylim(-0.5, 5.5)
sns.stripplot(x="Solver",
y="Gap (%)",
jitter=0.25,
data=results[results["Mode"] != "heuristic"],
ax=ax2,
size=4.0,
);
# Figure 3: Solver x Primal Value
ax3.set_ylim(0.95,1.05)
sns.stripplot(x="Solver",
y=primal_column,
jitter=0.25,
data=results[results["Mode"] == "heuristic"],
ax=ax3,
);
# Figure 4: Predicted vs Actual Objective Value
sns.scatterplot(x=obj_column,
y=predicted_obj_column,
hue="Solver",
data=results[results["Mode"] != "heuristic"],
ax=ax4,
);
xlim, ylim = ax4.get_xlim(), ax4.get_ylim()
ax4.plot([-1e10, 1e10], [-1e10, 1e10], ls='-', color="#cccccc");
ax4.set_xlim(xlim)
ax4.set_ylim(ylim)
ax4.get_legend().remove()
fig.tight_layout()
plt.savefig(filename, bbox_inches='tight', dpi=150)