You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/types.py

127 lines
2.9 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Optional, Dict, Callable, Any, Union, Tuple, List, Set, Hashable
from mypy_extensions import TypedDict
VarIndex = Union[str, int, Tuple[Union[str, int]]]
Solution = Dict[str, Dict[VarIndex, Optional[float]]]
TrainingSample = TypedDict(
"TrainingSample",
{
"LP log": str,
"LP solution": Optional[Solution],
"LP value": Optional[float],
"LazyStatic: All": Set[str],
"LazyStatic: Enforced": Set[str],
"Lower bound": Optional[float],
"MIP log": str,
"Solution": Optional[Solution],
"Upper bound": Optional[float],
"slacks": Dict,
},
total=False,
)
LPSolveStats = TypedDict(
"LPSolveStats",
{
"LP log": str,
"LP value": Optional[float],
},
)
MIPSolveStats = TypedDict(
"MIPSolveStats",
{
"Lower bound": Optional[float],
"MIP log": str,
"Nodes": Optional[int],
"Sense": str,
"Upper bound": Optional[float],
"Wallclock time": float,
"Warm start value": Optional[float],
},
)
LearningSolveStats = TypedDict(
"LearningSolveStats",
{
"Gap": Optional[float],
"Instance": Union[str, int],
"LP log": str,
"LP value": Optional[float],
"Lower bound": Optional[float],
"MIP log": str,
"Mode": str,
"Nodes": Optional[int],
"Objective: Predicted lower bound": float,
"Objective: Predicted upper bound": float,
"Primal: Free": int,
"Primal: One": int,
"Primal: Zero": int,
"Sense": str,
"Solver": str,
"Upper bound": Optional[float],
"Wallclock time": float,
"Warm start value": Optional[float],
},
total=False,
)
InstanceFeatures = TypedDict(
"InstanceFeatures",
{
"User features": List[float],
},
total=False,
)
VariableFeatures = TypedDict(
"VariableFeatures",
{
"Category": Optional[Hashable],
"User features": Optional[List[float]],
},
total=False,
)
ConstraintFeatures = TypedDict(
"ConstraintFeatures",
{
"RHS": float,
"LHS": Dict[str, float],
"Sense": str,
"Category": Optional[Hashable],
"User features": Optional[List[float]],
"Lazy": bool,
},
total=False,
)
Features = TypedDict(
"Features",
{
"Instance": InstanceFeatures,
"Variables": Dict[str, Dict[VarIndex, VariableFeatures]],
"Constraints": Dict[str, ConstraintFeatures],
},
total=False,
)
IterationCallback = Callable[[], bool]
LazyCallback = Callable[[Any, Any], None]
SolverParams = Dict[str, Any]
BranchPriorities = Solution
class Constraint:
pass