You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
8.0 KiB
261 lines
8.0 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
from typing import Hashable, Dict
|
|
from unittest.mock import Mock
|
|
|
|
import numpy as np
|
|
import pytest
|
|
from numpy.testing import assert_array_equal
|
|
|
|
from miplearn.classifiers import Regressor
|
|
from miplearn.components.objective import ObjectiveValueComponent
|
|
from miplearn.features import TrainingSample, InstanceFeatures, Features
|
|
from miplearn.instance.base import Instance
|
|
from miplearn.solvers.learning import LearningSolver
|
|
from miplearn.solvers.pyomo.gurobi import GurobiPyomoSolver
|
|
from tests.fixtures.knapsack import get_knapsack_instance
|
|
|
|
|
|
@pytest.fixture
|
|
def instance(features: Features) -> Instance:
|
|
instance = Mock(spec=Instance)
|
|
instance.features = features
|
|
return instance
|
|
|
|
|
|
@pytest.fixture
|
|
def features() -> Features:
|
|
return Features(
|
|
instance=InstanceFeatures(
|
|
user_features=[1.0, 2.0],
|
|
)
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def sample() -> TrainingSample:
|
|
return TrainingSample(
|
|
lower_bound=1.0,
|
|
upper_bound=2.0,
|
|
lp_value=3.0,
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_without_lp() -> TrainingSample:
|
|
return TrainingSample(
|
|
lower_bound=1.0,
|
|
upper_bound=2.0,
|
|
)
|
|
|
|
|
|
@pytest.fixture
|
|
def sample_without_ub() -> TrainingSample:
|
|
return TrainingSample(
|
|
lower_bound=1.0,
|
|
lp_value=3.0,
|
|
)
|
|
|
|
|
|
def test_sample_xy(
|
|
instance: Instance,
|
|
sample: TrainingSample,
|
|
) -> None:
|
|
x_expected = {
|
|
"Lower bound": [[1.0, 2.0, 3.0]],
|
|
"Upper bound": [[1.0, 2.0, 3.0]],
|
|
}
|
|
y_expected = {
|
|
"Lower bound": [[1.0]],
|
|
"Upper bound": [[2.0]],
|
|
}
|
|
xy = ObjectiveValueComponent().sample_xy(instance, sample)
|
|
assert xy is not None
|
|
x_actual, y_actual = xy
|
|
assert x_actual == x_expected
|
|
assert y_actual == y_expected
|
|
|
|
|
|
def test_sample_xy_without_lp(
|
|
instance: Instance,
|
|
sample_without_lp: TrainingSample,
|
|
) -> None:
|
|
x_expected = {
|
|
"Lower bound": [[1.0, 2.0]],
|
|
"Upper bound": [[1.0, 2.0]],
|
|
}
|
|
y_expected = {
|
|
"Lower bound": [[1.0]],
|
|
"Upper bound": [[2.0]],
|
|
}
|
|
xy = ObjectiveValueComponent().sample_xy(instance, sample_without_lp)
|
|
assert xy is not None
|
|
x_actual, y_actual = xy
|
|
assert x_actual == x_expected
|
|
assert y_actual == y_expected
|
|
|
|
|
|
def test_sample_xy_without_ub(
|
|
instance: Instance,
|
|
sample_without_ub: TrainingSample,
|
|
) -> None:
|
|
x_expected = {
|
|
"Lower bound": [[1.0, 2.0, 3.0]],
|
|
"Upper bound": [[1.0, 2.0, 3.0]],
|
|
}
|
|
y_expected = {"Lower bound": [[1.0]]}
|
|
xy = ObjectiveValueComponent().sample_xy(instance, sample_without_ub)
|
|
assert xy is not None
|
|
x_actual, y_actual = xy
|
|
assert x_actual == x_expected
|
|
assert y_actual == y_expected
|
|
|
|
|
|
def test_fit_xy() -> None:
|
|
x: Dict[Hashable, np.ndarray] = {
|
|
"Lower bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
"Upper bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
}
|
|
y: Dict[Hashable, np.ndarray] = {
|
|
"Lower bound": np.array([[100.0]]),
|
|
"Upper bound": np.array([[200.0]]),
|
|
}
|
|
reg = Mock(spec=Regressor)
|
|
reg.clone = Mock(side_effect=lambda: Mock(spec=Regressor))
|
|
comp = ObjectiveValueComponent(regressor=reg)
|
|
assert "Upper bound" not in comp.regressors
|
|
assert "Lower bound" not in comp.regressors
|
|
comp.fit_xy(x, y)
|
|
assert reg.clone.call_count == 2
|
|
assert "Upper bound" in comp.regressors
|
|
assert "Lower bound" in comp.regressors
|
|
assert comp.regressors["Upper bound"].fit.call_count == 1 # type: ignore
|
|
assert comp.regressors["Lower bound"].fit.call_count == 1 # type: ignore
|
|
assert_array_equal(
|
|
comp.regressors["Upper bound"].fit.call_args[0][0], # type: ignore
|
|
x["Upper bound"],
|
|
)
|
|
assert_array_equal(
|
|
comp.regressors["Lower bound"].fit.call_args[0][0], # type: ignore
|
|
x["Lower bound"],
|
|
)
|
|
assert_array_equal(
|
|
comp.regressors["Upper bound"].fit.call_args[0][1], # type: ignore
|
|
y["Upper bound"],
|
|
)
|
|
assert_array_equal(
|
|
comp.regressors["Lower bound"].fit.call_args[0][1], # type: ignore
|
|
y["Lower bound"],
|
|
)
|
|
|
|
|
|
def test_fit_xy_without_ub() -> None:
|
|
x: Dict[Hashable, np.ndarray] = {
|
|
"Lower bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
"Upper bound": np.array([[0.0, 0.0], [1.0, 2.0]]),
|
|
}
|
|
y: Dict[Hashable, np.ndarray] = {
|
|
"Lower bound": np.array([[100.0]]),
|
|
}
|
|
reg = Mock(spec=Regressor)
|
|
reg.clone = Mock(side_effect=lambda: Mock(spec=Regressor))
|
|
comp = ObjectiveValueComponent(regressor=reg)
|
|
assert "Upper bound" not in comp.regressors
|
|
assert "Lower bound" not in comp.regressors
|
|
comp.fit_xy(x, y)
|
|
assert reg.clone.call_count == 1
|
|
assert "Upper bound" not in comp.regressors
|
|
assert "Lower bound" in comp.regressors
|
|
assert comp.regressors["Lower bound"].fit.call_count == 1 # type: ignore
|
|
assert_array_equal(
|
|
comp.regressors["Lower bound"].fit.call_args[0][0], # type: ignore
|
|
x["Lower bound"],
|
|
)
|
|
assert_array_equal(
|
|
comp.regressors["Lower bound"].fit.call_args[0][1], # type: ignore
|
|
y["Lower bound"],
|
|
)
|
|
|
|
|
|
def test_sample_predict(
|
|
instance: Instance,
|
|
sample: TrainingSample,
|
|
) -> None:
|
|
x, y = ObjectiveValueComponent().sample_xy(instance, sample)
|
|
comp = ObjectiveValueComponent()
|
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
|
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
|
comp.regressors["Lower bound"].predict = Mock( # type: ignore
|
|
side_effect=lambda _: np.array([[50.0]])
|
|
)
|
|
comp.regressors["Upper bound"].predict = Mock( # type: ignore
|
|
side_effect=lambda _: np.array([[60.0]])
|
|
)
|
|
pred = comp.sample_predict(instance, sample)
|
|
assert pred == {
|
|
"Lower bound": 50.0,
|
|
"Upper bound": 60.0,
|
|
}
|
|
assert_array_equal(
|
|
comp.regressors["Upper bound"].predict.call_args[0][0], # type: ignore
|
|
x["Upper bound"],
|
|
)
|
|
assert_array_equal(
|
|
comp.regressors["Lower bound"].predict.call_args[0][0], # type: ignore
|
|
x["Lower bound"],
|
|
)
|
|
|
|
|
|
def test_sample_predict_without_ub(
|
|
instance: Instance,
|
|
sample_without_ub: TrainingSample,
|
|
) -> None:
|
|
x, y = ObjectiveValueComponent().sample_xy(instance, sample_without_ub)
|
|
comp = ObjectiveValueComponent()
|
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
|
comp.regressors["Lower bound"].predict = Mock( # type: ignore
|
|
side_effect=lambda _: np.array([[50.0]])
|
|
)
|
|
pred = comp.sample_predict(instance, sample_without_ub)
|
|
assert pred == {
|
|
"Lower bound": 50.0,
|
|
}
|
|
assert_array_equal(
|
|
comp.regressors["Lower bound"].predict.call_args[0][0], # type: ignore
|
|
x["Lower bound"],
|
|
)
|
|
|
|
|
|
def test_sample_evaluate(instance: Instance, sample: TrainingSample) -> None:
|
|
comp = ObjectiveValueComponent()
|
|
comp.regressors["Lower bound"] = Mock(spec=Regressor)
|
|
comp.regressors["Lower bound"].predict = lambda _: np.array([[1.05]]) # type: ignore
|
|
comp.regressors["Upper bound"] = Mock(spec=Regressor)
|
|
comp.regressors["Upper bound"].predict = lambda _: np.array([[2.50]]) # type: ignore
|
|
ev = comp.sample_evaluate(instance, sample)
|
|
assert ev == {
|
|
"Lower bound": {
|
|
"Actual value": 1.0,
|
|
"Predicted value": 1.05,
|
|
"Absolute error": 0.05,
|
|
"Relative error": 0.05,
|
|
},
|
|
"Upper bound": {
|
|
"Actual value": 2.0,
|
|
"Predicted value": 2.50,
|
|
"Absolute error": 0.5,
|
|
"Relative error": 0.25,
|
|
},
|
|
}
|
|
|
|
|
|
def test_usage() -> None:
|
|
solver = LearningSolver(components=[ObjectiveValueComponent()])
|
|
instance = get_knapsack_instance(GurobiPyomoSolver())
|
|
solver.solve(instance)
|
|
solver.fit([instance])
|
|
stats = solver.solve(instance)
|
|
assert stats["Lower bound"] == stats["Objective: Predicted lower bound"]
|
|
assert stats["Upper bound"] == stats["Objective: Predicted upper bound"]
|