You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/tests/test_transformer.py

75 lines
2.6 KiB

# MIPLearn: A Machine-Learning Framework for Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from miplearn import Instance, LearningSolver
from miplearn.transformers import PerVariableTransformer
from miplearn.problems.knapsack import KnapsackInstance, KnapsackInstance2
import numpy as np
import pyomo.environ as pe
def test_transform():
transformer = PerVariableTransformer()
instance = KnapsackInstance(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
model = instance.to_model()
var_split = transformer.split_variables(instance, model)
var_split_expected = {
"default": [
(model.x, 0),
(model.x, 1),
(model.x, 2),
(model.x, 3)
]
}
assert var_split == var_split_expected
var_index_pairs = [(model.x, i) for i in range(4)]
x_actual = transformer.transform_instance(instance, var_index_pairs)
x_expected = np.array([
[67., 21.75, 23., 505.],
[67., 21.75, 26., 352.],
[67., 21.75, 20., 458.],
[67., 21.75, 18., 220.],
])
assert x_expected.tolist() == x_actual.tolist()
solver = pe.SolverFactory('cplex')
solver.options["threads"] = 1
solver.solve(model)
y_actual = transformer.transform_solution(var_index_pairs)
y_expected = np.array([1., 0., 1., 1.])
assert y_actual.tolist() == y_expected.tolist()
def test_transform_with_categories():
transformer = PerVariableTransformer()
instance = KnapsackInstance2(weights=[23., 26., 20., 18.],
prices=[505., 352., 458., 220.],
capacity=67.)
model = instance.to_model()
var_split = transformer.split_variables(instance, model)
var_split_expected = {
0: [(model.x, 0)],
1: [(model.x, 1)],
2: [(model.x, 2)],
3: [(model.x, 3)],
}
assert var_split == var_split_expected
var_index_pairs = var_split[0]
x_actual = transformer.transform_instance(instance, var_index_pairs)
x_expected = np.array([[23., 26., 20., 18., 505., 352., 458., 220.]])
assert x_expected.tolist() == x_actual.tolist()
solver = pe.SolverFactory('cplex')
solver.options["threads"] = 1
solver.solve(model)
y_actual = transformer.transform_solution(var_index_pairs)
y_expected = np.array([1.])
assert y_actual.tolist() == y_expected.tolist()