You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/features/extractor.py

363 lines
14 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import collections
import numbers
from math import log, isfinite
from typing import TYPE_CHECKING, Dict, Optional, List, Any
import numpy as np
from miplearn.features.sample import Sample
if TYPE_CHECKING:
from miplearn.solvers.internal import InternalSolver
from miplearn.instance.base import Instance
class FeaturesExtractor:
def __init__(
self,
with_sa: bool = True,
with_lhs: bool = True,
) -> None:
self.with_sa = with_sa
self.with_lhs = with_lhs
def extract_after_load_features(
self,
instance: "Instance",
solver: "InternalSolver",
sample: Sample,
) -> None:
variables = solver.get_variables(with_static=True)
constraints = solver.get_constraints(with_static=True, with_lhs=self.with_lhs)
sample.put_vector("var_lower_bounds", variables.lower_bounds)
sample.put_vector("var_names", variables.names)
sample.put_vector("var_obj_coeffs", variables.obj_coeffs)
sample.put_vector("var_types", variables.types)
sample.put_vector("var_upper_bounds", variables.upper_bounds)
sample.put_vector("constr_names", constraints.names)
sample.put("constr_lhs", constraints.lhs)
sample.put_vector("constr_rhs", constraints.rhs)
sample.put_vector("constr_senses", constraints.senses)
self._extract_user_features_vars(instance, sample)
self._extract_user_features_constrs(instance, sample)
self._extract_user_features_instance(instance, sample)
self._extract_var_features_AlvLouWeh2017(sample)
sample.put_vector_list(
"var_features",
self._combine(
sample,
[
"var_features_AlvLouWeh2017",
"var_features_user",
"var_lower_bounds",
"var_obj_coeffs",
"var_upper_bounds",
],
),
)
def extract_after_lp_features(
self,
solver: "InternalSolver",
sample: Sample,
) -> None:
variables = solver.get_variables(with_static=False, with_sa=self.with_sa)
constraints = solver.get_constraints(with_static=False, with_sa=self.with_sa)
sample.put_vector("lp_var_basis_status", variables.basis_status)
sample.put_vector("lp_var_reduced_costs", variables.reduced_costs)
sample.put_vector("lp_var_sa_lb_down", variables.sa_lb_down)
sample.put_vector("lp_var_sa_lb_up", variables.sa_lb_up)
sample.put_vector("lp_var_sa_obj_down", variables.sa_obj_down)
sample.put_vector("lp_var_sa_obj_up", variables.sa_obj_up)
sample.put_vector("lp_var_sa_ub_down", variables.sa_ub_down)
sample.put_vector("lp_var_sa_ub_up", variables.sa_ub_up)
sample.put_vector("lp_var_values", variables.values)
sample.put_vector("lp_constr_basis_status", constraints.basis_status)
sample.put_vector("lp_constr_dual_values", constraints.dual_values)
sample.put_vector("lp_constr_sa_rhs_down", constraints.sa_rhs_down)
sample.put_vector("lp_constr_sa_rhs_up", constraints.sa_rhs_up)
sample.put_vector("lp_constr_slacks", constraints.slacks)
self._extract_var_features_AlvLouWeh2017(sample, prefix="lp_")
sample.put_vector_list(
"lp_var_features",
self._combine(
sample,
[
"lp_var_features_AlvLouWeh2017",
"lp_var_reduced_costs",
"lp_var_sa_lb_down",
"lp_var_sa_lb_up",
"lp_var_sa_obj_down",
"lp_var_sa_obj_up",
"lp_var_sa_ub_down",
"lp_var_sa_ub_up",
"lp_var_values",
"var_features_user",
"var_lower_bounds",
"var_obj_coeffs",
"var_upper_bounds",
],
),
)
sample.put_vector_list(
"lp_constr_features",
self._combine(
sample,
[
"constr_features_user",
"lp_constr_dual_values",
"lp_constr_sa_rhs_down",
"lp_constr_sa_rhs_up",
"lp_constr_slacks",
],
),
)
instance_features_user = sample.get("instance_features_user")
assert instance_features_user is not None
sample.put_vector(
"lp_instance_features",
instance_features_user
+ [
sample.get("lp_value"),
sample.get("lp_wallclock_time"),
],
)
def extract_after_mip_features(
self,
solver: "InternalSolver",
sample: Sample,
) -> None:
variables = solver.get_variables(with_static=False, with_sa=False)
constraints = solver.get_constraints(with_static=False, with_sa=False)
sample.put_vector("mip_var_values", variables.values)
sample.put_vector("mip_constr_slacks", constraints.slacks)
def _extract_user_features_vars(
self,
instance: "Instance",
sample: Sample,
) -> None:
categories: List[Optional[str]] = []
user_features: List[Optional[List[float]]] = []
var_features_dict = instance.get_variable_features()
var_categories_dict = instance.get_variable_categories()
var_names = sample.get("var_names")
assert var_names is not None
for (i, var_name) in enumerate(var_names):
if var_name not in var_categories_dict:
user_features.append(None)
categories.append(None)
continue
category: str = var_categories_dict[var_name]
assert isinstance(category, str), (
f"Variable category must be a string. "
f"Found {type(category).__name__} instead for var={var_name}."
)
categories.append(category)
user_features_i: Optional[List[float]] = None
if var_name in var_features_dict:
user_features_i = var_features_dict[var_name]
if isinstance(user_features_i, np.ndarray):
user_features_i = user_features_i.tolist()
assert isinstance(user_features_i, list), (
f"Variable features must be a list. "
f"Found {type(user_features_i).__name__} instead for "
f"var={var_name}."
)
for v in user_features_i:
assert isinstance(v, numbers.Real), (
f"Variable features must be a list of numbers. "
f"Found {type(v).__name__} instead "
f"for var={var_name}."
)
user_features_i = list(user_features_i)
user_features.append(user_features_i)
sample.put("var_categories", categories)
sample.put_vector_list("var_features_user", user_features)
def _extract_user_features_constrs(
self,
instance: "Instance",
sample: Sample,
) -> None:
has_static_lazy = instance.has_static_lazy_constraints()
user_features: List[Optional[List[float]]] = []
categories: List[Optional[str]] = []
lazy: List[bool] = []
constr_categories_dict = instance.get_constraint_categories()
constr_features_dict = instance.get_constraint_features()
constr_names = sample.get("constr_names")
assert constr_names is not None
for (cidx, cname) in enumerate(constr_names):
category: Optional[str] = cname
if cname in constr_categories_dict:
category = constr_categories_dict[cname]
if category is None:
user_features.append(None)
categories.append(None)
continue
assert isinstance(category, str), (
f"Constraint category must be a string. "
f"Found {type(category).__name__} instead for cname={cname}.",
)
categories.append(category)
cf: Optional[List[float]] = None
if cname in constr_features_dict:
cf = constr_features_dict[cname]
if isinstance(cf, np.ndarray):
cf = cf.tolist()
assert isinstance(cf, list), (
f"Constraint features must be a list. "
f"Found {type(cf).__name__} instead for cname={cname}."
)
for f in cf:
assert isinstance(f, numbers.Real), (
f"Constraint features must be a list of numbers. "
f"Found {type(f).__name__} instead for cname={cname}."
)
cf = list(cf)
user_features.append(cf)
if has_static_lazy:
lazy.append(instance.is_constraint_lazy(cname))
else:
lazy.append(False)
sample.put_vector_list("constr_features_user", user_features)
sample.put_vector("constr_lazy", lazy)
sample.put("constr_categories", categories)
def _extract_user_features_instance(
self,
instance: "Instance",
sample: Sample,
) -> None:
user_features = instance.get_instance_features()
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Instance features must be a list. "
f"Found {type(user_features).__name__} instead."
)
for v in user_features:
assert isinstance(v, numbers.Real), (
f"Instance features must be a list of numbers. "
f"Found {type(v).__name__} instead."
)
constr_lazy = sample.get("constr_lazy")
assert constr_lazy is not None
sample.put_vector("instance_features_user", user_features)
sample.put_scalar("static_lazy_count", sum(constr_lazy))
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
def _extract_var_features_AlvLouWeh2017(
self,
sample: Sample,
prefix: str = "",
) -> None:
obj_coeffs = sample.get("var_obj_coeffs")
obj_sa_down = sample.get("lp_var_sa_obj_down")
obj_sa_up = sample.get("lp_var_sa_obj_up")
values = sample.get(f"lp_var_values")
assert obj_coeffs is not None
pos_obj_coeff_sum = 0.0
neg_obj_coeff_sum = 0.0
for coeff in obj_coeffs:
if coeff > 0:
pos_obj_coeff_sum += coeff
if coeff < 0:
neg_obj_coeff_sum += -coeff
features = []
for i in range(len(obj_coeffs)):
f: List[float] = []
if obj_coeffs is not None:
# Feature 1
f.append(np.sign(obj_coeffs[i]))
# Feature 2
if pos_obj_coeff_sum > 0:
f.append(abs(obj_coeffs[i]) / pos_obj_coeff_sum)
else:
f.append(0.0)
# Feature 3
if neg_obj_coeff_sum > 0:
f.append(abs(obj_coeffs[i]) / neg_obj_coeff_sum)
else:
f.append(0.0)
if values is not None:
# Feature 37
f.append(
min(
values[i] - np.floor(values[i]),
np.ceil(values[i]) - values[i],
)
)
if obj_sa_up is not None:
assert obj_sa_down is not None
assert obj_coeffs is not None
# Convert inf into large finite numbers
sd = max(-1e20, obj_sa_down[i])
su = min(1e20, obj_sa_up[i])
obj = obj_coeffs[i]
# Features 44 and 46
f.append(np.sign(obj_sa_up[i]))
f.append(np.sign(obj_sa_down[i]))
# Feature 47
csign = np.sign(obj)
if csign != 0 and ((obj - sd) / csign) > 0.001:
f.append(log((obj - sd) / csign))
else:
f.append(0.0)
# Feature 48
if csign != 0 and ((su - obj) / csign) > 0.001:
f.append(log((su - obj) / csign))
else:
f.append(0.0)
for v in f:
assert isfinite(v), f"non-finite elements detected: {f}"
features.append(f)
sample.put_vector_list(f"{prefix}var_features_AlvLouWeh2017", features)
def _combine(
self,
sample: Sample,
attrs: List[str],
) -> List[List[float]]:
combined: List[List[float]] = []
for attr in attrs:
series = sample.get(attr)
if series is None:
continue
if len(combined) == 0:
for i in range(len(series)):
combined.append([])
for (i, s) in enumerate(series):
if s is None:
continue
elif isinstance(s, list):
combined[i].extend([_clip(sj) for sj in s])
else:
combined[i].append(_clip(s))
return combined
def _clip(vi: float) -> float:
if not isfinite(vi):
return max(min(vi, 1e20), -1e20)
return vi