You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
174 lines
6.0 KiB
174 lines
6.0 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
from typing import Dict, Hashable, List, Tuple, TYPE_CHECKING
|
|
|
|
import numpy as np
|
|
from overrides import overrides
|
|
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.threshold import Threshold
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.component import Component
|
|
from miplearn.features import TrainingSample
|
|
|
|
if TYPE_CHECKING:
|
|
from miplearn.solvers.learning import Instance
|
|
|
|
|
|
class DynamicConstraintsComponent(Component):
|
|
"""
|
|
Base component used by both DynamicLazyConstraintsComponent and UserCutsComponent.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
attr: str,
|
|
classifier: Classifier,
|
|
threshold: Threshold,
|
|
):
|
|
assert isinstance(classifier, Classifier)
|
|
self.threshold_prototype: Threshold = threshold
|
|
self.classifier_prototype: Classifier = classifier
|
|
self.classifiers: Dict[Hashable, Classifier] = {}
|
|
self.thresholds: Dict[Hashable, Threshold] = {}
|
|
self.known_cids: List[str] = []
|
|
self.attr = attr
|
|
|
|
def sample_xy_with_cids(
|
|
self,
|
|
instance: "Instance",
|
|
sample: TrainingSample,
|
|
) -> Tuple[
|
|
Dict[Hashable, List[List[float]]],
|
|
Dict[Hashable, List[List[bool]]],
|
|
Dict[Hashable, List[str]],
|
|
]:
|
|
x: Dict[Hashable, List[List[float]]] = {}
|
|
y: Dict[Hashable, List[List[bool]]] = {}
|
|
cids: Dict[Hashable, List[str]] = {}
|
|
for cid in self.known_cids:
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in x:
|
|
x[category] = []
|
|
y[category] = []
|
|
cids[category] = []
|
|
assert instance.features.instance is not None
|
|
assert instance.features.instance.user_features is not None
|
|
cfeatures = instance.get_constraint_features(cid)
|
|
assert cfeatures is not None
|
|
assert isinstance(cfeatures, list)
|
|
for ci in cfeatures:
|
|
assert isinstance(ci, float)
|
|
f = list(instance.features.instance.user_features)
|
|
f += cfeatures
|
|
x[category] += [f]
|
|
cids[category] += [cid]
|
|
if getattr(sample, self.attr) is not None:
|
|
if cid in getattr(sample, self.attr):
|
|
y[category] += [[False, True]]
|
|
else:
|
|
y[category] += [[True, False]]
|
|
return x, y, cids
|
|
|
|
@overrides
|
|
def sample_xy(
|
|
self,
|
|
instance: "Instance",
|
|
sample: TrainingSample,
|
|
) -> Tuple[Dict, Dict]:
|
|
x, y, _ = self.sample_xy_with_cids(instance, sample)
|
|
return x, y
|
|
|
|
def sample_predict(
|
|
self,
|
|
instance: "Instance",
|
|
sample: TrainingSample,
|
|
) -> List[Hashable]:
|
|
pred: List[Hashable] = []
|
|
x, _, cids = self.sample_xy_with_cids(instance, sample)
|
|
for category in x.keys():
|
|
assert category in self.classifiers
|
|
assert category in self.thresholds
|
|
clf = self.classifiers[category]
|
|
thr = self.thresholds[category]
|
|
nx = np.array(x[category])
|
|
proba = clf.predict_proba(nx)
|
|
t = thr.predict(nx)
|
|
for i in range(proba.shape[0]):
|
|
if proba[i][1] > t[1]:
|
|
pred += [cids[category][i]]
|
|
return pred
|
|
|
|
@overrides
|
|
def fit(self, training_instances: List["Instance"]) -> None:
|
|
collected_cids = set()
|
|
for instance in training_instances:
|
|
instance.load()
|
|
for sample in instance.training_data:
|
|
if getattr(sample, self.attr) is None:
|
|
continue
|
|
collected_cids |= getattr(sample, self.attr)
|
|
instance.free()
|
|
self.known_cids.clear()
|
|
self.known_cids.extend(sorted(collected_cids))
|
|
super().fit(training_instances)
|
|
|
|
@overrides
|
|
def fit_xy(
|
|
self,
|
|
x: Dict[Hashable, np.ndarray],
|
|
y: Dict[Hashable, np.ndarray],
|
|
) -> None:
|
|
for category in x.keys():
|
|
self.classifiers[category] = self.classifier_prototype.clone()
|
|
self.thresholds[category] = self.threshold_prototype.clone()
|
|
npx = np.array(x[category])
|
|
npy = np.array(y[category])
|
|
self.classifiers[category].fit(npx, npy)
|
|
self.thresholds[category].fit(self.classifiers[category], npx, npy)
|
|
|
|
@overrides
|
|
def sample_evaluate(
|
|
self,
|
|
instance: "Instance",
|
|
sample: TrainingSample,
|
|
) -> Dict[Hashable, Dict[str, float]]:
|
|
assert getattr(sample, self.attr) is not None
|
|
pred = set(self.sample_predict(instance, sample))
|
|
tp: Dict[Hashable, int] = {}
|
|
tn: Dict[Hashable, int] = {}
|
|
fp: Dict[Hashable, int] = {}
|
|
fn: Dict[Hashable, int] = {}
|
|
for cid in self.known_cids:
|
|
category = instance.get_constraint_category(cid)
|
|
if category is None:
|
|
continue
|
|
if category not in tp.keys():
|
|
tp[category] = 0
|
|
tn[category] = 0
|
|
fp[category] = 0
|
|
fn[category] = 0
|
|
if cid in pred:
|
|
if cid in getattr(sample, self.attr):
|
|
tp[category] += 1
|
|
else:
|
|
fp[category] += 1
|
|
else:
|
|
if cid in getattr(sample, self.attr):
|
|
fn[category] += 1
|
|
else:
|
|
tn[category] += 1
|
|
return {
|
|
category: classifier_evaluation_dict(
|
|
tp=tp[category],
|
|
tn=tn[category],
|
|
fp=fp[category],
|
|
fn=fn[category],
|
|
)
|
|
for category in tp.keys()
|
|
}
|