You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
178 lines
6.9 KiB
178 lines
6.9 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from copy import deepcopy
|
|
from typing import Union, Dict, Any
|
|
|
|
import numpy as np
|
|
from tqdm.auto import tqdm
|
|
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.adaptive import AdaptiveClassifier
|
|
from miplearn.classifiers.threshold import MinPrecisionThreshold, DynamicThreshold
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.component import Component
|
|
from miplearn.extractors import VariableFeaturesExtractor, SolutionExtractor, Extractor
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class PrimalSolutionComponent(Component):
|
|
"""
|
|
A component that predicts primal solutions.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
classifier: Classifier = AdaptiveClassifier(),
|
|
mode: str = "exact",
|
|
threshold: Union[float, DynamicThreshold] = MinPrecisionThreshold(0.98),
|
|
) -> None:
|
|
self.mode = mode
|
|
self.classifiers: Dict[Any, Classifier] = {}
|
|
self.thresholds: Dict[Any, Union[float, DynamicThreshold]] = {}
|
|
self.threshold_prototype = threshold
|
|
self.classifier_prototype = classifier
|
|
|
|
def before_solve(self, solver, instance, model):
|
|
logger.info("Predicting primal solution...")
|
|
solution = self.predict(instance)
|
|
if self.mode == "heuristic":
|
|
solver.internal_solver.fix(solution)
|
|
else:
|
|
solver.internal_solver.set_warm_start(solution)
|
|
|
|
def after_solve(
|
|
self,
|
|
solver,
|
|
instance,
|
|
model,
|
|
stats,
|
|
training_data,
|
|
):
|
|
pass
|
|
|
|
def x(self, training_instances):
|
|
return VariableFeaturesExtractor().extract(training_instances)
|
|
|
|
def y(self, training_instances):
|
|
return SolutionExtractor().extract(training_instances)
|
|
|
|
def fit(self, training_instances, n_jobs=1):
|
|
logger.debug("Extracting features...")
|
|
features = VariableFeaturesExtractor().extract(training_instances)
|
|
solutions = SolutionExtractor().extract(training_instances)
|
|
|
|
for category in tqdm(
|
|
features.keys(),
|
|
desc="Fit (primal)",
|
|
):
|
|
x_train = features[category]
|
|
for label in [0, 1]:
|
|
y_train = solutions[category][:, label].astype(int)
|
|
|
|
# If all samples are either positive or negative, make constant
|
|
# predictions
|
|
y_avg = np.average(y_train)
|
|
if y_avg < 0.001 or y_avg >= 0.999:
|
|
self.classifiers[category, label] = round(y_avg)
|
|
self.thresholds[category, label] = 0.50
|
|
continue
|
|
|
|
# Create a copy of classifier prototype and train it
|
|
if isinstance(self.classifier_prototype, list):
|
|
clf = deepcopy(self.classifier_prototype[label])
|
|
else:
|
|
clf = deepcopy(self.classifier_prototype)
|
|
clf.fit(x_train, y_train)
|
|
|
|
# Find threshold (dynamic or static)
|
|
if isinstance(self.threshold_prototype, DynamicThreshold):
|
|
self.thresholds[category, label] = self.threshold_prototype.find(
|
|
clf,
|
|
x_train,
|
|
y_train,
|
|
)
|
|
else:
|
|
self.thresholds[category, label] = deepcopy(
|
|
self.threshold_prototype
|
|
)
|
|
|
|
self.classifiers[category, label] = clf
|
|
|
|
def predict(self, instance):
|
|
solution = {}
|
|
x_test = VariableFeaturesExtractor().extract([instance])
|
|
var_split = Extractor.split_variables(instance)
|
|
for category in var_split.keys():
|
|
n = len(var_split[category])
|
|
for (i, (var, index)) in enumerate(var_split[category]):
|
|
if var not in solution.keys():
|
|
solution[var] = {}
|
|
solution[var][index] = None
|
|
for label in [0, 1]:
|
|
if (category, label) not in self.classifiers.keys():
|
|
continue
|
|
clf = self.classifiers[category, label]
|
|
if isinstance(clf, float) or isinstance(clf, int):
|
|
ws = np.array([[1 - clf, clf] for _ in range(n)])
|
|
else:
|
|
ws = clf.predict_proba(x_test[category])
|
|
assert ws.shape == (n, 2), "ws.shape should be (%d, 2) not %s" % (
|
|
n,
|
|
ws.shape,
|
|
)
|
|
for (i, (var, index)) in enumerate(var_split[category]):
|
|
if ws[i, 1] >= self.thresholds[category, label]:
|
|
solution[var][index] = label
|
|
return solution
|
|
|
|
def evaluate(self, instances):
|
|
ev = {"Fix zero": {}, "Fix one": {}}
|
|
for instance_idx in tqdm(
|
|
range(len(instances)),
|
|
desc="Evaluate (primal)",
|
|
):
|
|
instance = instances[instance_idx]
|
|
solution_actual = instance.training_data[0]["Solution"]
|
|
solution_pred = self.predict(instance)
|
|
|
|
vars_all, vars_one, vars_zero = set(), set(), set()
|
|
pred_one_positive, pred_zero_positive = set(), set()
|
|
for (varname, var_dict) in solution_actual.items():
|
|
if varname not in solution_pred.keys():
|
|
continue
|
|
for (idx, value) in var_dict.items():
|
|
vars_all.add((varname, idx))
|
|
if value > 0.5:
|
|
vars_one.add((varname, idx))
|
|
else:
|
|
vars_zero.add((varname, idx))
|
|
if solution_pred[varname][idx] is not None:
|
|
if solution_pred[varname][idx] > 0.5:
|
|
pred_one_positive.add((varname, idx))
|
|
else:
|
|
pred_zero_positive.add((varname, idx))
|
|
pred_one_negative = vars_all - pred_one_positive
|
|
pred_zero_negative = vars_all - pred_zero_positive
|
|
|
|
tp_zero = len(pred_zero_positive & vars_zero)
|
|
fp_zero = len(pred_zero_positive & vars_one)
|
|
tn_zero = len(pred_zero_negative & vars_one)
|
|
fn_zero = len(pred_zero_negative & vars_zero)
|
|
|
|
tp_one = len(pred_one_positive & vars_one)
|
|
fp_one = len(pred_one_positive & vars_zero)
|
|
tn_one = len(pred_one_negative & vars_zero)
|
|
fn_one = len(pred_one_negative & vars_one)
|
|
|
|
ev["Fix zero"][instance_idx] = classifier_evaluation_dict(
|
|
tp_zero, tn_zero, fp_zero, fn_zero
|
|
)
|
|
ev["Fix one"][instance_idx] = classifier_evaluation_dict(
|
|
tp_one, tn_one, fp_one, fn_one
|
|
)
|
|
return ev
|