You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/components/test_lazy_dynamic.py

144 lines
5.8 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from unittest.mock import Mock
import numpy as np
from numpy.linalg import norm
from miplearn.classifiers import Classifier
from miplearn.components.lazy_dynamic import DynamicLazyConstraintsComponent
from miplearn.solvers.internal import InternalSolver
from miplearn.solvers.learning import LearningSolver
from .. import get_test_pyomo_instances
E = 0.1
def test_lazy_fit():
instances, models = get_test_pyomo_instances()
instances[0].found_violated_lazy_constraints = ["a", "b"]
instances[1].found_violated_lazy_constraints = ["b", "c"]
classifier = Mock(spec=Classifier)
component = DynamicLazyConstraintsComponent(classifier=classifier)
component.fit(instances)
# Should create one classifier for each violation
assert "a" in component.classifiers
assert "b" in component.classifiers
assert "c" in component.classifiers
# Should provide correct x_train to each classifier
expected_x_train_a = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
expected_x_train_b = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
expected_x_train_c = np.array([[67.0, 21.75, 1287.92], [70.0, 23.75, 1199.83]])
actual_x_train_a = component.classifiers["a"].fit.call_args[0][0]
actual_x_train_b = component.classifiers["b"].fit.call_args[0][0]
actual_x_train_c = component.classifiers["c"].fit.call_args[0][0]
assert norm(expected_x_train_a - actual_x_train_a) < E
assert norm(expected_x_train_b - actual_x_train_b) < E
assert norm(expected_x_train_c - actual_x_train_c) < E
# Should provide correct y_train to each classifier
expected_y_train_a = np.array([1.0, 0.0])
expected_y_train_b = np.array([1.0, 1.0])
expected_y_train_c = np.array([0.0, 1.0])
actual_y_train_a = component.classifiers["a"].fit.call_args[0][1]
actual_y_train_b = component.classifiers["b"].fit.call_args[0][1]
actual_y_train_c = component.classifiers["c"].fit.call_args[0][1]
assert norm(expected_y_train_a - actual_y_train_a) < E
assert norm(expected_y_train_b - actual_y_train_b) < E
assert norm(expected_y_train_c - actual_y_train_c) < E
def test_lazy_before():
instances, models = get_test_pyomo_instances()
instances[0].build_lazy_constraint = Mock(return_value="c1")
solver = LearningSolver()
solver.internal_solver = Mock(spec=InternalSolver)
component = DynamicLazyConstraintsComponent(threshold=0.10)
component.classifiers = {"a": Mock(spec=Classifier), "b": Mock(spec=Classifier)}
component.classifiers["a"].predict_proba = Mock(return_value=[[0.95, 0.05]])
component.classifiers["b"].predict_proba = Mock(return_value=[[0.02, 0.80]])
component.before_solve(solver, instances[0], models[0])
# Should ask classifier likelihood of each constraint being violated
expected_x_test_a = np.array([[67.0, 21.75, 1287.92]])
expected_x_test_b = np.array([[67.0, 21.75, 1287.92]])
actual_x_test_a = component.classifiers["a"].predict_proba.call_args[0][0]
actual_x_test_b = component.classifiers["b"].predict_proba.call_args[0][0]
assert norm(expected_x_test_a - actual_x_test_a) < E
assert norm(expected_x_test_b - actual_x_test_b) < E
# Should ask instance to generate cut for constraints whose likelihood
# of being violated exceeds the threshold
instances[0].build_lazy_constraint.assert_called_once_with(models[0], "b")
# Should ask internal solver to add generated constraint
solver.internal_solver.add_constraint.assert_called_once_with("c1")
def test_lazy_evaluate():
instances, models = get_test_pyomo_instances()
component = DynamicLazyConstraintsComponent()
component.classifiers = {
"a": Mock(spec=Classifier),
"b": Mock(spec=Classifier),
"c": Mock(spec=Classifier),
}
component.classifiers["a"].predict_proba = Mock(return_value=[[1.0, 0.0]])
component.classifiers["b"].predict_proba = Mock(return_value=[[0.0, 1.0]])
component.classifiers["c"].predict_proba = Mock(return_value=[[0.0, 1.0]])
instances[0].found_violated_lazy_constraints = ["a", "b", "c"]
instances[1].found_violated_lazy_constraints = ["b", "d"]
assert component.evaluate(instances) == {
0: {
"Accuracy": 0.75,
"F1 score": 0.8,
"Precision": 1.0,
"Recall": 2 / 3.0,
"Predicted positive": 2,
"Predicted negative": 2,
"Condition positive": 3,
"Condition negative": 1,
"False negative": 1,
"False positive": 0,
"True negative": 1,
"True positive": 2,
"Predicted positive (%)": 50.0,
"Predicted negative (%)": 50.0,
"Condition positive (%)": 75.0,
"Condition negative (%)": 25.0,
"False negative (%)": 25.0,
"False positive (%)": 0,
"True negative (%)": 25.0,
"True positive (%)": 50.0,
},
1: {
"Accuracy": 0.5,
"F1 score": 0.5,
"Precision": 0.5,
"Recall": 0.5,
"Predicted positive": 2,
"Predicted negative": 2,
"Condition positive": 2,
"Condition negative": 2,
"False negative": 1,
"False positive": 1,
"True negative": 1,
"True positive": 1,
"Predicted positive (%)": 50.0,
"Predicted negative (%)": 50.0,
"Condition positive (%)": 50.0,
"Condition negative (%)": 50.0,
"False negative (%)": 25.0,
"False positive (%)": 25.0,
"True negative (%)": 25.0,
"True positive (%)": 25.0,
},
}