You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
209 lines
7.3 KiB
209 lines
7.3 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from typing import Dict, Tuple, List, Hashable, Any, TYPE_CHECKING, Set
|
|
|
|
import numpy as np
|
|
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.counting import CountingClassifier
|
|
from miplearn.classifiers.threshold import MinProbabilityThreshold, Threshold
|
|
from miplearn.components.component import Component
|
|
from miplearn.features import TrainingSample, Features
|
|
from miplearn.types import LearningSolveStats
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if TYPE_CHECKING:
|
|
from miplearn.solvers.learning import LearningSolver, Instance
|
|
|
|
|
|
class LazyConstraint:
|
|
def __init__(self, cid: str, obj: Any) -> None:
|
|
self.cid = cid
|
|
self.obj = obj
|
|
|
|
|
|
class StaticLazyConstraintsComponent(Component):
|
|
"""
|
|
Component that decides which of the constraints tagged as lazy should
|
|
be kept in the formulation, and which should be removed.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
classifier: Classifier = CountingClassifier(),
|
|
threshold: Threshold = MinProbabilityThreshold([0.50, 0.50]),
|
|
violation_tolerance: float = -0.5,
|
|
) -> None:
|
|
assert isinstance(classifier, Classifier)
|
|
self.classifier_prototype: Classifier = classifier
|
|
self.threshold_prototype: Threshold = threshold
|
|
self.classifiers: Dict[Hashable, Classifier] = {}
|
|
self.thresholds: Dict[Hashable, Threshold] = {}
|
|
self.pool: Dict[str, LazyConstraint] = {}
|
|
self.violation_tolerance: float = violation_tolerance
|
|
self.enforced_cids: Set[str] = set()
|
|
self.n_restored: int = 0
|
|
self.n_iterations: int = 0
|
|
|
|
def before_solve_mip(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: "Instance",
|
|
model: Any,
|
|
stats: LearningSolveStats,
|
|
features: Features,
|
|
training_data: TrainingSample,
|
|
) -> None:
|
|
assert solver.internal_solver is not None
|
|
assert features.instance is not None
|
|
assert features.constraints is not None
|
|
|
|
if not features.instance.lazy_constraint_count == 0:
|
|
logger.info("Instance does not have static lazy constraints. Skipping.")
|
|
logger.info("Predicting required lazy constraints...")
|
|
self.enforced_cids = set(self.sample_predict(instance, training_data))
|
|
logger.info("Moving lazy constraints to the pool...")
|
|
self.pool = {}
|
|
for (cid, cdict) in features.constraints.items():
|
|
if cdict.lazy and cid not in self.enforced_cids:
|
|
self.pool[cid] = LazyConstraint(
|
|
cid=cid,
|
|
obj=solver.internal_solver.extract_constraint(cid),
|
|
)
|
|
logger.info(
|
|
f"{len(self.enforced_cids)} lazy constraints kept; "
|
|
f"{len(self.pool)} moved to the pool"
|
|
)
|
|
stats["LazyStatic: Removed"] = len(self.pool)
|
|
stats["LazyStatic: Kept"] = len(self.enforced_cids)
|
|
stats["LazyStatic: Restored"] = 0
|
|
self.n_restored = 0
|
|
self.n_iterations = 0
|
|
|
|
def after_solve_mip(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: "Instance",
|
|
model: Any,
|
|
stats: LearningSolveStats,
|
|
features: Features,
|
|
training_data: TrainingSample,
|
|
) -> None:
|
|
training_data.lazy_enforced = self.enforced_cids
|
|
stats["LazyStatic: Restored"] = self.n_restored
|
|
stats["LazyStatic: Iterations"] = self.n_iterations
|
|
|
|
def iteration_cb(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: "Instance",
|
|
model: Any,
|
|
) -> bool:
|
|
if solver.use_lazy_cb:
|
|
return False
|
|
else:
|
|
return self._check_and_add(solver)
|
|
|
|
def lazy_cb(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: "Instance",
|
|
model: Any,
|
|
) -> None:
|
|
self._check_and_add(solver)
|
|
|
|
def _check_and_add(self, solver: "LearningSolver") -> bool:
|
|
assert solver.internal_solver is not None
|
|
logger.info("Finding violated lazy constraints...")
|
|
enforced: List[LazyConstraint] = []
|
|
for (cid, c) in self.pool.items():
|
|
if not solver.internal_solver.is_constraint_satisfied(
|
|
c.obj,
|
|
tol=self.violation_tolerance,
|
|
):
|
|
enforced.append(c)
|
|
logger.info(f"{len(enforced)} violations found")
|
|
for c in enforced:
|
|
del self.pool[c.cid]
|
|
solver.internal_solver.add_constraint(c.obj)
|
|
self.enforced_cids.add(c.cid)
|
|
self.n_restored += 1
|
|
logger.info(
|
|
f"{len(enforced)} constraints restored; {len(self.pool)} in the pool"
|
|
)
|
|
if len(enforced) > 0:
|
|
self.n_iterations += 1
|
|
return True
|
|
else:
|
|
return False
|
|
|
|
def sample_predict(
|
|
self,
|
|
instance: "Instance",
|
|
sample: TrainingSample,
|
|
) -> List[str]:
|
|
assert instance.features.constraints is not None
|
|
|
|
x, y = self.sample_xy(instance, sample)
|
|
category_to_cids: Dict[Hashable, List[str]] = {}
|
|
for (cid, cfeatures) in instance.features.constraints.items():
|
|
if cfeatures.category is None:
|
|
continue
|
|
category = cfeatures.category
|
|
if category not in category_to_cids:
|
|
category_to_cids[category] = []
|
|
category_to_cids[category] += [cid]
|
|
enforced_cids: List[str] = []
|
|
for category in x.keys():
|
|
if category not in self.classifiers:
|
|
continue
|
|
npx = np.array(x[category])
|
|
proba = self.classifiers[category].predict_proba(npx)
|
|
thr = self.thresholds[category].predict(npx)
|
|
pred = list(proba[:, 1] > thr[1])
|
|
for (i, is_selected) in enumerate(pred):
|
|
if is_selected:
|
|
enforced_cids += [category_to_cids[category][i]]
|
|
return enforced_cids
|
|
|
|
def sample_xy(
|
|
self,
|
|
instance: "Instance",
|
|
sample: TrainingSample,
|
|
) -> Tuple[Dict[Hashable, List[List[float]]], Dict[Hashable, List[List[float]]]]:
|
|
assert instance.features.constraints is not None
|
|
x: Dict = {}
|
|
y: Dict = {}
|
|
for (cid, cfeatures) in instance.features.constraints.items():
|
|
if not cfeatures.lazy:
|
|
continue
|
|
category = cfeatures.category
|
|
if category is None:
|
|
continue
|
|
if category not in x:
|
|
x[category] = []
|
|
y[category] = []
|
|
x[category] += [cfeatures.user_features]
|
|
if sample.lazy_enforced is not None:
|
|
if cid in sample.lazy_enforced:
|
|
y[category] += [[False, True]]
|
|
else:
|
|
y[category] += [[True, False]]
|
|
return x, y
|
|
|
|
def fit_xy(
|
|
self,
|
|
x: Dict[Hashable, np.ndarray],
|
|
y: Dict[Hashable, np.ndarray],
|
|
) -> None:
|
|
for c in y.keys():
|
|
assert c in x
|
|
self.classifiers[c] = self.classifier_prototype.clone()
|
|
self.thresholds[c] = self.threshold_prototype.clone()
|
|
self.classifiers[c].fit(x[c], y[c])
|
|
self.thresholds[c].fit(self.classifiers[c], x[c], y[c])
|