You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/problems/stab.py

136 lines
4.7 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import networkx as nx
import numpy as np
import pyomo.environ as pe
from scipy.stats import uniform, randint
from scipy.stats.distributions import rv_frozen
from miplearn.instance.base import Instance
class ChallengeA:
def __init__(
self,
seed=42,
n_training_instances=500,
n_test_instances=50,
):
np.random.seed(seed)
self.generator = MaxWeightStableSetGenerator(
w=uniform(loc=100.0, scale=50.0),
n=randint(low=200, high=201),
p=uniform(loc=0.05, scale=0.0),
fix_graph=True,
)
np.random.seed(seed + 1)
self.training_instances = self.generator.generate(n_training_instances)
np.random.seed(seed + 2)
self.test_instances = self.generator.generate(n_test_instances)
class MaxWeightStableSetGenerator:
"""Random instance generator for the Maximum-Weight Stable Set Problem.
The generator has two modes of operation. When `fix_graph=True` is provided, one random
Erdős-Rényi graph $G_{n,p}$ is generated in the constructor, where $n$ and $p$ are sampled
from user-provided probability distributions `n` and `p`. To generate each instance, the
generator independently samples each $w_v$ from the user-provided probability distribution `w`.
When `fix_graph=False`, a new random graph is generated for each instance; the remaining
parameters are sampled in the same way.
"""
def __init__(
self,
w=uniform(loc=10.0, scale=1.0),
n=randint(low=250, high=251),
p=uniform(loc=0.05, scale=0.0),
fix_graph=True,
):
"""Initialize the problem generator.
Parameters
----------
w: rv_continuous
Probability distribution for vertex weights.
n: rv_discrete
Probability distribution for parameter $n$ in Erdős-Rényi model.
p: rv_continuous
Probability distribution for parameter $p$ in Erdős-Rényi model.
"""
assert isinstance(w, rv_frozen), "w should be a SciPy probability distribution"
assert isinstance(n, rv_frozen), "n should be a SciPy probability distribution"
assert isinstance(p, rv_frozen), "p should be a SciPy probability distribution"
self.w = w
self.n = n
self.p = p
self.fix_graph = fix_graph
self.graph = None
if fix_graph:
self.graph = self._generate_graph()
def generate(self, n_samples):
def _sample():
if self.graph is not None:
graph = self.graph
else:
graph = self._generate_graph()
weights = self.w.rvs(graph.number_of_nodes())
return MaxWeightStableSetInstance(graph, weights)
return [_sample() for _ in range(n_samples)]
def _generate_graph(self):
return nx.generators.random_graphs.binomial_graph(self.n.rvs(), self.p.rvs())
class MaxWeightStableSetInstance(Instance):
"""An instance of the Maximum-Weight Stable Set Problem.
Given a graph G=(V,E) and a weight w_v for each vertex v, the problem asks for a stable
set S of G maximizing sum(w_v for v in S). A stable set (also called independent set) is
a subset of vertices, no two of which are adjacent.
This is one of Karp's 21 NP-complete problems.
"""
def __init__(self, graph, weights):
super().__init__()
self.graph = graph
self.weights = weights
def to_model(self):
nodes = list(self.graph.nodes)
model = pe.ConcreteModel()
model.x = pe.Var(nodes, domain=pe.Binary)
model.OBJ = pe.Objective(
expr=sum(model.x[v] * self.weights[v] for v in nodes), sense=pe.maximize
)
model.clique_eqs = pe.ConstraintList()
for clique in nx.find_cliques(self.graph):
model.clique_eqs.add(sum(model.x[i] for i in clique) <= 1)
return model
def get_variable_features(self, var, index):
neighbor_weights = [0] * 15
neighbor_degrees = [100] * 15
for n in self.graph.neighbors(index):
neighbor_weights += [self.weights[n] / self.weights[index]]
neighbor_degrees += [self.graph.degree(n) / self.graph.degree(index)]
neighbor_weights.sort(reverse=True)
neighbor_degrees.sort()
features = []
features += neighbor_weights[:5]
features += neighbor_degrees[:5]
features += [self.graph.degree(index)]
return features
def get_variable_category(self, var, index):
return "default"