You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/tests/components/steps/test_drop_redundant.py

440 lines
12 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from unittest.mock import Mock, call
import numpy as np
from miplearn.classifiers import Classifier
from miplearn.components.steps.drop_redundant import DropRedundantInequalitiesStep
from miplearn.components.steps.relax_integrality import RelaxIntegralityStep
from miplearn.features import TrainingSample, Features
from miplearn.instance.base import Instance
from miplearn.solvers.gurobi import GurobiSolver
from miplearn.solvers.internal import InternalSolver
from miplearn.solvers.learning import LearningSolver
from tests.fixtures.infeasible import get_infeasible_instance
from tests.fixtures.redundant import get_instance_with_redundancy
def _setup():
solver = Mock(spec=LearningSolver)
internal = solver.internal_solver = Mock(spec=InternalSolver)
internal.get_constraint_ids = Mock(return_value=["c1", "c2", "c3", "c4"])
internal.get_inequality_slacks = Mock(
side_effect=lambda: {
"c1": 0.5,
"c2": 0.0,
"c3": 0.0,
"c4": 1.4,
}
)
internal.extract_constraint = Mock(side_effect=lambda cid: "<%s>" % cid)
internal.is_constraint_satisfied = Mock(return_value=False)
internal.is_infeasible = Mock(return_value=False)
instance = Mock(spec=Instance)
instance.get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": np.array([1.0, 0.0]),
"c3": np.array([0.5, 0.5]),
"c4": np.array([1.0]),
}[cid]
)
instance.get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
}
classifiers["type-a"].predict_proba = Mock(
return_value=np.array(
[
[0.20, 0.80],
[0.05, 0.95],
]
)
)
classifiers["type-b"].predict_proba = Mock(
return_value=np.array(
[
[0.02, 0.98],
]
)
)
return solver, internal, instance, classifiers
def test_drop_redundant():
solver, internal, instance, classifiers = _setup()
component = DropRedundantInequalitiesStep()
component.classifiers = classifiers
# LearningSolver calls before_solve
component.before_solve_mip(
solver=solver,
instance=instance,
model=None,
stats={},
features=Features(),
training_data=TrainingSample(),
)
# Should query list of constraints
internal.get_constraint_ids.assert_called_once()
# Should query category and features for each constraint in the model
assert instance.get_constraint_category.call_count == 4
instance.get_constraint_category.assert_has_calls(
[
call("c1"),
call("c2"),
call("c3"),
call("c4"),
]
)
# For constraint with non-null categories, should ask for features
assert instance.get_constraint_features.call_count == 3
instance.get_constraint_features.assert_has_calls(
[
call("c2"),
call("c3"),
call("c4"),
]
)
# Should ask ML to predict whether constraint should be removed
type_a_actual = component.classifiers["type-a"].predict_proba.call_args[0][0]
type_b_actual = component.classifiers["type-b"].predict_proba.call_args[0][0]
np.testing.assert_array_equal(type_a_actual, np.array([[1.0, 0.0], [0.5, 0.5]]))
np.testing.assert_array_equal(type_b_actual, np.array([[1.0]]))
# Should ask internal solver to remove constraints predicted as redundant
assert internal.extract_constraint.call_count == 2
internal.extract_constraint.assert_has_calls(
[
call("c3"),
call("c4"),
]
)
# LearningSolver calls after_solve
training_data = TrainingSample()
component.after_solve_mip(
solver=solver,
instance=instance,
model=None,
stats={},
features=Features(),
training_data=training_data,
)
# Should query slack for all inequalities
internal.get_inequality_slacks.assert_called_once()
# Should store constraint slacks in instance object
assert training_data.slacks == {
"c1": 0.5,
"c2": 0.0,
"c3": 0.0,
"c4": 1.4,
}
def test_drop_redundant_with_check_feasibility():
solver, internal, instance, classifiers = _setup()
component = DropRedundantInequalitiesStep(
check_feasibility=True,
violation_tolerance=1e-3,
)
component.classifiers = classifiers
# LearningSolver call before_solve
component.before_solve_mip(
solver=solver,
instance=instance,
model=None,
stats={},
features=Features(),
training_data=TrainingSample(),
)
# Assert constraints are extracted
assert internal.extract_constraint.call_count == 2
internal.extract_constraint.assert_has_calls(
[
call("c3"),
call("c4"),
]
)
# LearningSolver calls iteration_cb (first time)
should_repeat = component.iteration_cb(solver, instance, None)
# Should ask LearningSolver to repeat
assert should_repeat
# Should ask solver if removed constraints are satisfied (mock always returns false)
internal.is_constraint_satisfied.assert_has_calls(
[
call("<c3>", 1e-3),
call("<c4>", 1e-3),
]
)
# Should add constraints back to LP relaxation
internal.add_constraint.assert_has_calls([call("<c3>"), call("<c4>")])
# LearningSolver calls iteration_cb (second time)
should_repeat = component.iteration_cb(solver, instance, None)
assert not should_repeat
def test_x_y_fit_predict_evaluate():
instances = [Mock(spec=Instance), Mock(spec=Instance)]
component = DropRedundantInequalitiesStep(slack_tolerance=0.05, threshold=0.80)
component.classifiers = {
"type-a": Mock(spec=Classifier),
"type-b": Mock(spec=Classifier),
}
component.classifiers["type-a"].predict_proba = Mock(
return_value=[
np.array([0.20, 0.80]),
]
)
component.classifiers["type-b"].predict_proba = Mock(
return_value=np.array(
[
[0.50, 0.50],
[0.05, 0.95],
]
)
)
# First mock instance
instances[0].training_data = [
TrainingSample(
slacks={
"c1": 0.00,
"c2": 0.05,
"c3": 0.00,
"c4": 30.0,
}
)
]
instances[0].get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
instances[0].get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": np.array([1.0, 0.0]),
"c3": np.array([0.5, 0.5]),
"c4": np.array([1.0]),
}[cid]
)
# Second mock instance
instances[1].training_data = [
TrainingSample(
slacks={
"c1": 0.00,
"c3": 0.30,
"c4": 0.00,
"c5": 0.00,
}
)
]
instances[1].get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c3": "type-a",
"c4": "type-b",
"c5": "type-b",
}[cid]
)
instances[1].get_constraint_features = Mock(
side_effect=lambda cid: {
"c3": np.array([0.3, 0.4]),
"c4": np.array([0.7]),
"c5": np.array([0.8]),
}[cid]
)
expected_x = {
"type-a": np.array(
[
[1.0, 0.0],
[0.5, 0.5],
[0.3, 0.4],
]
),
"type-b": np.array(
[
[1.0],
[0.7],
[0.8],
]
),
}
expected_y = {
"type-a": np.array(
[
[True, False],
[True, False],
[False, True],
]
),
"type-b": np.array(
[
[False, True],
[True, False],
[True, False],
]
),
}
# Should build X and Y matrices correctly
actual_x, actual_y = component.x_y(instances)
for category in ["type-a", "type-b"]:
np.testing.assert_array_equal(actual_x[category], expected_x[category])
np.testing.assert_array_equal(actual_y[category], expected_y[category])
# Should pass along X and Y matrices to classifiers
component.fit(instances)
for category in ["type-a", "type-b"]:
actual_x = component.classifiers[category].fit.call_args[0][0]
actual_y = component.classifiers[category].fit.call_args[0][1]
np.testing.assert_array_equal(actual_x, expected_x[category])
np.testing.assert_array_equal(actual_y, expected_y[category])
assert component.predict(expected_x) == {
"type-a": [
[False, True],
],
"type-b": [
[True, False],
[False, True],
],
}
ev = component.evaluate(instances[1])
assert ev["True positive"] == 1
assert ev["True negative"] == 1
assert ev["False positive"] == 1
assert ev["False negative"] == 0
def test_x_multiple_solves():
instance = Mock(spec=Instance)
instance.training_data = [
TrainingSample(
slacks={
"c1": 0.00,
"c2": 0.05,
"c3": 0.00,
"c4": 30.0,
}
),
TrainingSample(
slacks={
"c1": 0.00,
"c2": 0.00,
"c3": 1.00,
"c4": 0.0,
}
),
]
instance.get_constraint_category = Mock(
side_effect=lambda cid: {
"c1": None,
"c2": "type-a",
"c3": "type-a",
"c4": "type-b",
}[cid]
)
instance.get_constraint_features = Mock(
side_effect=lambda cid: {
"c2": np.array([1.0, 0.0]),
"c3": np.array([0.5, 0.5]),
"c4": np.array([1.0]),
}[cid]
)
expected_x = {
"type-a": np.array(
[
[1.0, 0.0],
[0.5, 0.5],
[1.0, 0.0],
[0.5, 0.5],
]
),
"type-b": np.array(
[
[1.0],
[1.0],
]
),
}
expected_y = {
"type-a": np.array(
[
[False, True],
[True, False],
[True, False],
[False, True],
]
),
"type-b": np.array(
[
[False, True],
[True, False],
]
),
}
# Should build X and Y matrices correctly
component = DropRedundantInequalitiesStep()
actual_x, actual_y = component.x_y([instance])
for category in ["type-a", "type-b"]:
np.testing.assert_array_equal(actual_x[category], expected_x[category])
np.testing.assert_array_equal(actual_y[category], expected_y[category])
def test_usage():
for internal_solver in [GurobiSolver]:
for instance in [
get_instance_with_redundancy(internal_solver),
get_infeasible_instance(internal_solver),
]:
solver = LearningSolver(
solver=internal_solver,
components=[
RelaxIntegralityStep(),
DropRedundantInequalitiesStep(),
],
)
# The following should not crash
solver.solve(instance)
solver.fit([instance])
solver.solve(instance)