You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers/tests/__init__.py

284 lines
9.1 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
from typing import Any, List
from miplearn.features import VariableFeatures, ConstraintFeatures
from miplearn.solvers.internal import InternalSolver
inf = float("inf")
# NOTE:
# This file is in the main source folder, so that it can be called from Julia.
def _round(obj: Any) -> Any:
if obj is None:
return None
if isinstance(obj, float):
return round(obj, 6)
if isinstance(obj, tuple):
return tuple([_round(v) for v in obj])
if isinstance(obj, list):
return [_round(v) for v in obj]
if isinstance(obj, dict):
return {key: _round(value) for (key, value) in obj.items()}
if isinstance(obj, VariableFeatures):
obj.__dict__ = _round(obj.__dict__)
if isinstance(obj, ConstraintFeatures):
obj.__dict__ = _round(obj.__dict__)
return obj
def _filter_attrs(allowed_keys: List[str], obj: Any) -> Any:
for key in obj.__dict__.keys():
if key not in allowed_keys:
setattr(obj, key, None)
return obj
def run_internal_solver_tests(solver: InternalSolver) -> None:
run_basic_usage_tests(solver.clone())
run_warm_start_tests(solver.clone())
run_infeasibility_tests(solver.clone())
run_iteration_cb_tests(solver.clone())
if solver.are_callbacks_supported():
run_lazy_cb_tests(solver.clone())
def run_basic_usage_tests(solver: InternalSolver) -> None:
# Create and set instance
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
# Fetch variables (after-load)
assert_equals(
solver.get_variables(),
VariableFeatures(
names=["x[0]", "x[1]", "x[2]", "x[3]", "z"],
lower_bounds=[0.0, 0.0, 0.0, 0.0, 0.0],
upper_bounds=[1.0, 1.0, 1.0, 1.0, 67.0],
types=["B", "B", "B", "B", "C"],
obj_coeffs=[505.0, 352.0, 458.0, 220.0, 0.0],
),
)
# Fetch constraints (after-load)
assert_equals(
solver.get_constraints(),
ConstraintFeatures(
names=("eq_capacity",),
rhs=(0.0,),
lhs=(
(
("x[0]", 23.0),
("x[1]", 26.0),
("x[2]", 20.0),
("x[3]", 18.0),
("z", -1.0),
),
),
senses=("=",),
),
)
# Solve linear programming relaxation
lp_stats = solver.solve_lp()
assert not solver.is_infeasible()
assert lp_stats.lp_value is not None
assert_equals(round(lp_stats.lp_value, 3), 1287.923)
assert lp_stats.lp_log is not None
assert len(lp_stats.lp_log) > 100
assert lp_stats.lp_wallclock_time is not None
assert lp_stats.lp_wallclock_time > 0
# Fetch variables (after-lp)
assert_equals(
_round(solver.get_variables(with_static=False)),
_filter_attrs(
solver.get_variable_attrs(),
VariableFeatures(
names=["x[0]", "x[1]", "x[2]", "x[3]", "z"],
basis_status=["U", "B", "U", "L", "U"],
reduced_costs=[193.615385, 0.0, 187.230769, -23.692308, 13.538462],
sa_lb_down=[-inf, -inf, -inf, -0.111111, -inf],
sa_lb_up=[1.0, 0.923077, 1.0, 1.0, 67.0],
sa_obj_down=[311.384615, 317.777778, 270.769231, -inf, -13.538462],
sa_obj_up=[inf, 570.869565, inf, 243.692308, inf],
sa_ub_down=[0.913043, 0.923077, 0.9, 0.0, 43.0],
sa_ub_up=[2.043478, inf, 2.2, inf, 69.0],
values=[1.0, 0.923077, 1.0, 0.0, 67.0],
),
),
)
# Fetch constraints (after-lp)
assert_equals(
_round(solver.get_constraints(with_static=False)),
_filter_attrs(
solver.get_constraint_attrs(),
ConstraintFeatures(
basis_status=("N",),
dual_values=(13.538462,),
names=("eq_capacity",),
sa_rhs_down=(-24.0,),
sa_rhs_up=(2.0,),
slacks=(0.0,),
),
),
)
# Solve MIP
mip_stats = solver.solve(
tee=True,
)
assert not solver.is_infeasible()
assert mip_stats.mip_log is not None
assert len(mip_stats.mip_log) > 100
assert mip_stats.mip_lower_bound is not None
assert_equals(mip_stats.mip_lower_bound, 1183.0)
assert mip_stats.mip_upper_bound is not None
assert_equals(mip_stats.mip_upper_bound, 1183.0)
assert mip_stats.mip_sense is not None
assert_equals(mip_stats.mip_sense, "max")
assert mip_stats.mip_wallclock_time is not None
assert isinstance(mip_stats.mip_wallclock_time, float)
assert mip_stats.mip_wallclock_time > 0
# Fetch variables (after-mip)
assert_equals(
_round(solver.get_variables(with_static=False)),
_filter_attrs(
solver.get_variable_attrs(),
VariableFeatures(
names=["x[0]", "x[1]", "x[2]", "x[3]", "z"],
values=[1.0, 0.0, 1.0, 1.0, 61.0],
),
),
)
# Fetch constraints (after-mip)
assert_equals(
_round(solver.get_constraints(with_static=False)),
_filter_attrs(
solver.get_constraint_attrs(),
ConstraintFeatures(
names=("eq_capacity",),
slacks=(0.0,),
),
),
)
# Build new constraint and verify that it is violated
cf = ConstraintFeatures(
names=("cut",),
lhs=((("x[0]", 1.0),),),
rhs=(0.0,),
senses=("<",),
)
assert_equals(solver.are_constraints_satisfied(cf), (False,))
# Add constraint and verify it affects solution
solver.add_constraints(cf)
assert_equals(
_round(solver.get_constraints(with_static=True)),
_filter_attrs(
solver.get_constraint_attrs(),
ConstraintFeatures(
names=("eq_capacity", "cut"),
rhs=(0.0, 0.0),
lhs=(
(
("x[0]", 23.0),
("x[1]", 26.0),
("x[2]", 20.0),
("x[3]", 18.0),
("z", -1.0),
),
(("x[0]", 1.0),),
),
senses=("=", "<"),
),
),
)
stats = solver.solve()
assert_equals(stats.mip_lower_bound, 1030.0)
assert_equals(solver.are_constraints_satisfied(cf), (True,))
# Remove the new constraint
solver.remove_constraints(("cut",))
# New constraint should no longer affect solution
stats = solver.solve()
assert_equals(stats.mip_lower_bound, 1183.0)
def run_warm_start_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
solver.set_instance(instance, model)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
if stats.mip_warm_start_value is not None:
assert_equals(stats.mip_warm_start_value, 725.0)
solver.set_warm_start({"x[0]": 1.0, "x[1]": 1.0, "x[2]": 1.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert stats.mip_warm_start_value is None
solver.fix({"x[0]": 1.0, "x[1]": 0.0, "x[2]": 0.0, "x[3]": 1.0})
stats = solver.solve(tee=True)
assert_equals(stats.mip_lower_bound, 725.0)
assert_equals(stats.mip_upper_bound, 725.0)
def run_infeasibility_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_infeasible()
solver.set_instance(instance)
mip_stats = solver.solve()
assert solver.is_infeasible()
assert solver.get_solution() is None
assert mip_stats.mip_upper_bound is None
assert mip_stats.mip_lower_bound is None
lp_stats = solver.solve_lp()
assert solver.get_solution() is None
assert lp_stats.lp_value is None
def run_iteration_cb_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
solver.set_instance(instance)
count = 0
def custom_iteration_cb() -> bool:
nonlocal count
count += 1
return count < 5
solver.solve(iteration_cb=custom_iteration_cb)
assert_equals(count, 5)
def run_lazy_cb_tests(solver: InternalSolver) -> None:
instance = solver.build_test_instance_knapsack()
model = instance.to_model()
def lazy_cb(cb_solver: InternalSolver, cb_model: Any) -> None:
relsol = cb_solver.get_solution()
assert relsol is not None
assert relsol["x[0]"] is not None
if relsol["x[0]"] > 0:
instance.enforce_lazy_constraint(cb_solver, cb_model, "cut")
solver.set_instance(instance, model)
solver.solve(lazy_cb=lazy_cb)
solution = solver.get_solution()
assert solution is not None
assert_equals(solution["x[0]"], 0.0)
def assert_equals(left: Any, right: Any) -> None:
assert left == right, f"left:\n{left}\nright:\n{right}"