You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/solvers.py

145 lines
5.4 KiB

# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
# Written by Alinson S. Xavier <axavier@anl.gov>
from .warmstart import WarmStartComponent
from .branching import BranchPriorityComponent
import pyomo.environ as pe
import numpy as np
from copy import deepcopy
import pickle
from scipy.stats import randint
from p_tqdm import p_map
def _gurobi_factory():
solver = pe.SolverFactory('gurobi_persistent')
solver.options["threads"] = 4
solver.options["Seed"] = randint(low=0, high=1000).rvs()
return solver
class LearningSolver:
"""
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
"""
def __init__(self,
threads=None,
time_limit=None,
gap_limit=None,
internal_solver_factory=_gurobi_factory,
components=None,
mode=None):
self.is_persistent = None
self.internal_solver = None
self.components = components
self.internal_solver_factory = internal_solver_factory
self.threads = threads
self.time_limit = time_limit
self.gap_limit = gap_limit
if self.components is not None:
assert isinstance(self.components, dict)
else:
self.components = {
"warm-start": WarmStartComponent(),
#"branch-priority": BranchPriorityComponent(),
}
if mode is not None:
assert mode in ["exact", "heuristic"]
for component in self.components.values():
component.mode = mode
def _create_solver(self):
self.internal_solver = self.internal_solver_factory()
self.is_persistent = hasattr(self.internal_solver, "set_instance")
if self.threads is not None:
self.internal_solver.options["Threads"] = self.threads
if self.time_limit is not None:
self.internal_solver.options["TimeLimit"] = self.time_limit
if self.gap_limit is not None:
self.internal_solver.options["MIPGap"] = self.gap_limit
def solve(self, instance, tee=False):
model = instance.to_model()
# Solve linear relaxation (TODO: use solver provided by user)
lr_solver = pe.SolverFactory("gurobi")
lr_solver.options["threads"] = 4
lr_solver.options["relax_integrality"] = 1
lr_solver.solve(model)
self._create_solver()
if self.is_persistent:
self.internal_solver.set_instance(model)
for component in self.components.values():
component.before_solve(self, instance, model)
is_warm_start_available = False
if "warm-start" in self.components.keys():
if self.components["warm-start"].is_warm_start_available:
is_warm_start_available = True
if self.is_persistent:
solve_results = self.internal_solver.solve(tee=tee, warmstart=is_warm_start_available)
else:
solve_results = self.internal_solver.solve(model, tee=tee, warmstart=is_warm_start_available)
solve_results["Solver"][0]["Nodes"] = self.internal_solver._solver_model.getAttr("NodeCount")
for component in self.components.values():
component.after_solve(self, instance, model)
return solve_results
def parallel_solve(self,
instances,
n_jobs=4,
label="Solve",
collect_training_data=True,
):
self.internal_solver = None
def _process(instance):
solver = deepcopy(self)
results = solver.solve(instance)
solver.internal_solver = None
if not collect_training_data:
solver.components = {}
return solver, results
solver_result_pairs = p_map(_process, instances, num_cpus=n_jobs, desc=label)
subsolvers = [p[0] for p in solver_result_pairs]
results = [p[1] for p in solver_result_pairs]
for (name, component) in self.components.items():
subcomponents = [subsolver.components[name]
for subsolver in subsolvers
if name in subsolver.components.keys()]
self.components[name].merge(subcomponents)
return results
def fit(self, n_jobs=1):
for component in self.components.values():
component.fit(self, n_jobs=n_jobs)
def save_state(self, filename):
with open(filename, "wb") as file:
pickle.dump({
"version": 2,
"components": self.components,
}, file)
def load_state(self, filename):
with open(filename, "rb") as file:
data = pickle.load(file)
assert data["version"] == 2
for (component_name, component) in data["components"].items():
if component_name not in self.components.keys():
continue
else:
self.components[component_name].merge([component])