You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
9.0 KiB
251 lines
9.0 KiB
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
|
|
# Released under the modified BSD license. See COPYING.md for more details.
|
|
|
|
import logging
|
|
from typing import (
|
|
Dict,
|
|
List,
|
|
Hashable,
|
|
Any,
|
|
TYPE_CHECKING,
|
|
Tuple,
|
|
Optional,
|
|
)
|
|
|
|
import numpy as np
|
|
from overrides import overrides
|
|
|
|
from miplearn.classifiers import Classifier
|
|
from miplearn.classifiers.adaptive import AdaptiveClassifier
|
|
from miplearn.classifiers.threshold import MinPrecisionThreshold, Threshold
|
|
from miplearn.components import classifier_evaluation_dict
|
|
from miplearn.components.component import Component
|
|
from miplearn.features import Sample
|
|
from miplearn.instance.base import Instance
|
|
from miplearn.types import (
|
|
LearningSolveStats,
|
|
Category,
|
|
Solution,
|
|
)
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if TYPE_CHECKING:
|
|
from miplearn.solvers.learning import LearningSolver
|
|
|
|
|
|
class PrimalSolutionComponent(Component):
|
|
"""
|
|
A component that predicts the optimal primal values for the binary decision
|
|
variables.
|
|
|
|
In exact mode, predicted primal solutions are provided to the solver as MIP
|
|
starts. In heuristic mode, this component fixes the decision variables to their
|
|
predicted values.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
classifier: Classifier = AdaptiveClassifier(),
|
|
mode: str = "exact",
|
|
threshold: Threshold = MinPrecisionThreshold([0.98, 0.98]),
|
|
) -> None:
|
|
assert isinstance(classifier, Classifier)
|
|
assert isinstance(threshold, Threshold)
|
|
assert mode in ["exact", "heuristic"]
|
|
self.mode = mode
|
|
self.classifiers: Dict[Hashable, Classifier] = {}
|
|
self.thresholds: Dict[Hashable, Threshold] = {}
|
|
self.threshold_prototype = threshold
|
|
self.classifier_prototype = classifier
|
|
|
|
@overrides
|
|
def before_solve_mip(
|
|
self,
|
|
solver: "LearningSolver",
|
|
instance: Instance,
|
|
model: Any,
|
|
stats: LearningSolveStats,
|
|
sample: Sample,
|
|
) -> None:
|
|
logger.info("Predicting primal solution...")
|
|
|
|
# Do nothing if models are not trained
|
|
if len(self.classifiers) == 0:
|
|
logger.info("Classifiers not fitted. Skipping.")
|
|
return
|
|
|
|
# Predict solution and provide it to the solver
|
|
solution = self.sample_predict(sample)
|
|
assert solver.internal_solver is not None
|
|
if self.mode == "heuristic":
|
|
solver.internal_solver.fix(solution)
|
|
else:
|
|
solver.internal_solver.set_warm_start(solution)
|
|
|
|
# Update statistics
|
|
stats["Primal: Free"] = 0
|
|
stats["Primal: Zero"] = 0
|
|
stats["Primal: One"] = 0
|
|
for (var_name, value) in solution.items():
|
|
if value is None:
|
|
stats["Primal: Free"] += 1
|
|
else:
|
|
if value < 0.5:
|
|
stats["Primal: Zero"] += 1
|
|
else:
|
|
stats["Primal: One"] += 1
|
|
logger.info(
|
|
f"Predicted: free: {stats['Primal: Free']}, "
|
|
f"zero: {stats['Primal: Zero']}, "
|
|
f"one: {stats['Primal: One']}"
|
|
)
|
|
|
|
def sample_predict(self, sample: Sample) -> Solution:
|
|
assert sample.after_load is not None
|
|
assert sample.after_load.variables is not None
|
|
|
|
# Compute y_pred
|
|
x, _ = self.sample_xy(None, sample)
|
|
y_pred = {}
|
|
for category in x.keys():
|
|
assert category in self.classifiers, (
|
|
f"Classifier for category {category} has not been trained. "
|
|
f"Please call component.fit before component.predict."
|
|
)
|
|
xc = np.array(x[category])
|
|
proba = self.classifiers[category].predict_proba(xc)
|
|
thr = self.thresholds[category].predict(xc)
|
|
y_pred[category] = np.vstack(
|
|
[
|
|
proba[:, 0] >= thr[0],
|
|
proba[:, 1] >= thr[1],
|
|
]
|
|
).T
|
|
|
|
# Convert y_pred into solution
|
|
assert sample.after_load.variables.names is not None
|
|
assert sample.after_load.variables.categories is not None
|
|
solution: Solution = {v: None for v in sample.after_load.variables.names}
|
|
category_offset: Dict[Hashable, int] = {cat: 0 for cat in x.keys()}
|
|
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
|
category = sample.after_load.variables.categories[i]
|
|
if category not in category_offset:
|
|
continue
|
|
offset = category_offset[category]
|
|
category_offset[category] += 1
|
|
if y_pred[category][offset, 0]:
|
|
solution[var_name] = 0.0
|
|
if y_pred[category][offset, 1]:
|
|
solution[var_name] = 1.0
|
|
|
|
return solution
|
|
|
|
@overrides
|
|
def sample_xy(
|
|
self,
|
|
_: Optional[Instance],
|
|
sample: Sample,
|
|
) -> Tuple[Dict[Category, List[List[float]]], Dict[Category, List[List[float]]]]:
|
|
x: Dict = {}
|
|
y: Dict = {}
|
|
assert sample.after_load is not None
|
|
assert sample.after_load.instance is not None
|
|
assert sample.after_load.variables is not None
|
|
assert sample.after_load.variables.names is not None
|
|
assert sample.after_load.variables.categories is not None
|
|
|
|
for (i, var_name) in enumerate(sample.after_load.variables.names):
|
|
# Initialize categories
|
|
category = sample.after_load.variables.categories[i]
|
|
if category is None:
|
|
continue
|
|
if category not in x.keys():
|
|
x[category] = []
|
|
y[category] = []
|
|
|
|
# Features
|
|
features = list(sample.after_load.instance.to_list())
|
|
features.extend(sample.after_load.variables.to_list(i))
|
|
if sample.after_lp is not None:
|
|
assert sample.after_lp.variables is not None
|
|
features.extend(sample.after_lp.variables.to_list(i))
|
|
x[category].append(features)
|
|
|
|
# Labels
|
|
if sample.after_mip is not None:
|
|
assert sample.after_mip.variables is not None
|
|
assert sample.after_mip.variables.values is not None
|
|
opt_value = sample.after_mip.variables.values[i]
|
|
assert opt_value is not None
|
|
assert 0.0 - 1e-5 <= opt_value <= 1.0 + 1e-5, (
|
|
f"Variable {var_name} has non-binary value {opt_value} in the "
|
|
"optimal solution. Predicting values of non-binary "
|
|
"variables is not currently supported. Please set its "
|
|
"category to None."
|
|
)
|
|
y[category].append([opt_value < 0.5, opt_value >= 0.5])
|
|
return x, y
|
|
|
|
@overrides
|
|
def sample_evaluate(
|
|
self,
|
|
_: Optional[Instance],
|
|
sample: Sample,
|
|
) -> Dict[Hashable, Dict[str, float]]:
|
|
assert sample.after_mip is not None
|
|
assert sample.after_mip.variables is not None
|
|
assert sample.after_mip.variables.values is not None
|
|
assert sample.after_mip.variables.names is not None
|
|
|
|
solution_actual = {
|
|
var_name: sample.after_mip.variables.values[i]
|
|
for (i, var_name) in enumerate(sample.after_mip.variables.names)
|
|
}
|
|
solution_pred = self.sample_predict(sample)
|
|
vars_all, vars_one, vars_zero = set(), set(), set()
|
|
pred_one_positive, pred_zero_positive = set(), set()
|
|
for (var_name, value_actual) in solution_actual.items():
|
|
vars_all.add(var_name)
|
|
if value_actual > 0.5:
|
|
vars_one.add(var_name)
|
|
else:
|
|
vars_zero.add(var_name)
|
|
value_pred = solution_pred[var_name]
|
|
if value_pred is not None:
|
|
if value_pred > 0.5:
|
|
pred_one_positive.add(var_name)
|
|
else:
|
|
pred_zero_positive.add(var_name)
|
|
pred_one_negative = vars_all - pred_one_positive
|
|
pred_zero_negative = vars_all - pred_zero_positive
|
|
return {
|
|
0: classifier_evaluation_dict(
|
|
tp=len(pred_zero_positive & vars_zero),
|
|
tn=len(pred_zero_negative & vars_one),
|
|
fp=len(pred_zero_positive & vars_one),
|
|
fn=len(pred_zero_negative & vars_zero),
|
|
),
|
|
1: classifier_evaluation_dict(
|
|
tp=len(pred_one_positive & vars_one),
|
|
tn=len(pred_one_negative & vars_zero),
|
|
fp=len(pred_one_positive & vars_zero),
|
|
fn=len(pred_one_negative & vars_one),
|
|
),
|
|
}
|
|
|
|
@overrides
|
|
def fit_xy(
|
|
self,
|
|
x: Dict[Hashable, np.ndarray],
|
|
y: Dict[Hashable, np.ndarray],
|
|
) -> None:
|
|
for category in x.keys():
|
|
clf = self.classifier_prototype.clone()
|
|
thr = self.threshold_prototype.clone()
|
|
clf.fit(x[category], y[category])
|
|
thr.fit(clf, x[category], y[category])
|
|
self.classifiers[category] = clf
|
|
self.thresholds[category] = thr
|