You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
MIPLearn/miplearn/features.py

387 lines
14 KiB

# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import collections
import numbers
from dataclasses import dataclass
from math import log, isfinite
from typing import TYPE_CHECKING, Dict, Optional, List, Hashable, Tuple
import numpy as np
from miplearn.types import Category
if TYPE_CHECKING:
from miplearn.solvers.internal import InternalSolver, LPSolveStats, MIPSolveStats
from miplearn.instance.base import Instance
@dataclass
class InstanceFeatures:
user_features: Optional[List[float]] = None
lazy_constraint_count: int = 0
def to_list(self) -> List[float]:
features: List[float] = []
if self.user_features is not None:
features.extend(self.user_features)
_clip(features)
return features
@dataclass
class VariableFeatures:
names: Optional[Tuple[str, ...]] = None
basis_status: Optional[Tuple[str, ...]] = None
categories: Optional[Tuple[Optional[Hashable], ...]] = None
lower_bounds: Optional[Tuple[float, ...]] = None
obj_coeffs: Optional[Tuple[float, ...]] = None
reduced_costs: Optional[Tuple[float, ...]] = None
sa_lb_down: Optional[Tuple[float, ...]] = None
sa_lb_up: Optional[Tuple[float, ...]] = None
sa_obj_down: Optional[Tuple[float, ...]] = None
sa_obj_up: Optional[Tuple[float, ...]] = None
sa_ub_down: Optional[Tuple[float, ...]] = None
sa_ub_up: Optional[Tuple[float, ...]] = None
types: Optional[Tuple[str, ...]] = None
upper_bounds: Optional[Tuple[float, ...]] = None
user_features: Optional[Tuple[Optional[Tuple[float, ...]], ...]] = None
values: Optional[Tuple[float, ...]] = None
@dataclass
class Variable:
basis_status: Optional[str] = None
category: Optional[Hashable] = None
lower_bound: Optional[float] = None
obj_coeff: Optional[float] = None
reduced_cost: Optional[float] = None
sa_lb_down: Optional[float] = None
sa_lb_up: Optional[float] = None
sa_obj_down: Optional[float] = None
sa_obj_up: Optional[float] = None
sa_ub_down: Optional[float] = None
sa_ub_up: Optional[float] = None
type: Optional[str] = None
upper_bound: Optional[float] = None
user_features: Optional[List[float]] = None
value: Optional[float] = None
# Alvarez, A. M., Louveaux, Q., & Wehenkel, L. (2017). A machine learning-based
# approximation of strong branching. INFORMS Journal on Computing, 29(1), 185-195.
alvarez_2017: Optional[List[float]] = None
def to_list(self) -> List[float]:
features: List[float] = []
for attr in [
"lower_bound",
"obj_coeff",
"reduced_cost",
"sa_lb_down",
"sa_lb_up",
"sa_obj_down",
"sa_obj_up",
"sa_ub_down",
"sa_ub_up",
"upper_bound",
"value",
]:
if getattr(self, attr) is not None:
features.append(getattr(self, attr))
for attr in ["user_features", "alvarez_2017"]:
if getattr(self, attr) is not None:
features.extend(getattr(self, attr))
_clip(features)
return features
@dataclass
class Constraint:
basis_status: Optional[str] = None
category: Optional[Hashable] = None
dual_value: Optional[float] = None
lazy: bool = False
lhs: Optional[Dict[str, float]] = None
rhs: float = 0.0
sa_rhs_down: Optional[float] = None
sa_rhs_up: Optional[float] = None
sense: str = "<"
slack: Optional[float] = None
user_features: Optional[List[float]] = None
def to_list(self) -> List[float]:
features: List[float] = []
for attr in [
"dual value",
"rhs",
"sa_rhs_down",
"sa_rhs_up",
"slack",
]:
if getattr(self, attr) is not None:
features.append(getattr(self, attr))
for attr in ["user_features"]:
if getattr(self, attr) is not None:
features.extend(getattr(self, attr))
if self.lhs is not None and len(self.lhs) > 0:
features.append(np.max(self.lhs.values()))
features.append(np.average(self.lhs.values()))
features.append(np.min(self.lhs.values()))
_clip(features)
return features
@dataclass
class Features:
instance: Optional[InstanceFeatures] = None
variables: Optional[VariableFeatures] = None
variables_old: Optional[Dict[str, Variable]] = None
constraints: Optional[Dict[str, Constraint]] = None
lp_solve: Optional["LPSolveStats"] = None
mip_solve: Optional["MIPSolveStats"] = None
extra: Optional[Dict] = None
@dataclass
class Sample:
after_load: Optional[Features] = None
after_lp: Optional[Features] = None
after_mip: Optional[Features] = None
class FeaturesExtractor:
def __init__(
self,
internal_solver: "InternalSolver",
with_sa: bool = True,
) -> None:
self.solver = internal_solver
self.with_sa = with_sa
def extract(
self,
instance: "Instance",
with_static: bool = True,
) -> Features:
features = Features()
features.variables = self.solver.get_variables(
with_static=with_static,
with_sa=self.with_sa,
)
features.variables_old = self.solver.get_variables_old(
with_static=with_static,
)
features.constraints = self.solver.get_constraints(
with_static=with_static,
)
if with_static:
self._extract_user_features_vars(instance, features)
self._extract_user_features_vars_old(instance, features)
self._extract_user_features_constrs(instance, features)
self._extract_user_features_instance(instance, features)
self._extract_alvarez_2017(features)
return features
def _extract_user_features_vars_old(
self,
instance: "Instance",
features: Features,
) -> None:
assert features.variables_old is not None
for (var_name, var) in features.variables_old.items():
user_features: Optional[List[float]] = None
category: Category = instance.get_variable_category(var_name)
if category is not None:
assert isinstance(category, collections.Hashable), (
f"Variable category must be be hashable. "
f"Found {type(category).__name__} instead for var={var_name}."
)
user_features = instance.get_variable_features(var_name)
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Variable features must be a list. "
f"Found {type(user_features).__name__} instead for "
f"var={var_name}."
)
for v in user_features:
assert isinstance(v, numbers.Real), (
f"Variable features must be a list of numbers. "
f"Found {type(v).__name__} instead "
f"for var={var_name}."
)
var.category = category
var.user_features = user_features
def _extract_user_features_vars(
self,
instance: "Instance",
features: Features,
) -> None:
assert features.variables is not None
assert features.variables.names is not None
categories: List[Hashable] = []
user_features: List[Optional[Tuple[float, ...]]] = []
for (i, var_name) in enumerate(features.variables.names):
category: Hashable = instance.get_variable_category(var_name)
user_features_i: Optional[List[float]] = None
if category is not None:
assert isinstance(category, collections.Hashable), (
f"Variable category must be be hashable. "
f"Found {type(category).__name__} instead for var={var_name}."
)
user_features_i = instance.get_variable_features(var_name)
if isinstance(user_features_i, np.ndarray):
user_features_i = user_features_i.tolist()
assert isinstance(user_features_i, list), (
f"Variable features must be a list. "
f"Found {type(user_features_i).__name__} instead for "
f"var={var_name}."
)
for v in user_features_i:
assert isinstance(v, numbers.Real), (
f"Variable features must be a list of numbers. "
f"Found {type(v).__name__} instead "
f"for var={var_name}."
)
categories.append(category)
if user_features_i is None:
user_features.append(None)
else:
user_features.append(tuple(user_features_i))
features.variables.categories = tuple(categories)
features.variables.user_features = tuple(user_features)
def _extract_user_features_constrs(
self,
instance: "Instance",
features: Features,
) -> None:
assert features.constraints is not None
has_static_lazy = instance.has_static_lazy_constraints()
for (cid, constr) in features.constraints.items():
user_features = None
category = instance.get_constraint_category(cid)
if category is not None:
assert isinstance(category, collections.Hashable), (
f"Constraint category must be hashable. "
f"Found {type(category).__name__} instead for cid={cid}.",
)
user_features = instance.get_constraint_features(cid)
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Constraint features must be a list. "
f"Found {type(user_features).__name__} instead for cid={cid}."
)
assert isinstance(user_features[0], float), (
f"Constraint features must be a list of floats. "
f"Found {type(user_features[0]).__name__} instead for cid={cid}."
)
if has_static_lazy:
constr.lazy = instance.is_constraint_lazy(cid)
constr.category = category
constr.user_features = user_features
def _extract_user_features_instance(
self,
instance: "Instance",
features: Features,
) -> None:
assert features.constraints is not None
user_features = instance.get_instance_features()
if isinstance(user_features, np.ndarray):
user_features = user_features.tolist()
assert isinstance(user_features, list), (
f"Instance features must be a list. "
f"Found {type(user_features).__name__} instead."
)
for v in user_features:
assert isinstance(v, numbers.Real), (
f"Instance features must be a list of numbers. "
f"Found {type(v).__name__} instead."
)
lazy_count = 0
for (cid, cdict) in features.constraints.items():
if cdict.lazy:
lazy_count += 1
features.instance = InstanceFeatures(
user_features=user_features,
lazy_constraint_count=lazy_count,
)
def _extract_alvarez_2017(self, features: Features) -> None:
assert features.variables_old is not None
pos_obj_coeff_sum = 0.0
neg_obj_coeff_sum = 0.0
for (varname, var) in features.variables_old.items():
if var.obj_coeff is not None:
if var.obj_coeff > 0:
pos_obj_coeff_sum += var.obj_coeff
if var.obj_coeff < 0:
neg_obj_coeff_sum += -var.obj_coeff
for (varname, var) in features.variables_old.items():
assert isinstance(var, Variable)
f: List[float] = []
if var.obj_coeff is not None:
# Feature 1
f.append(np.sign(var.obj_coeff))
# Feature 2
if pos_obj_coeff_sum > 0:
f.append(abs(var.obj_coeff) / pos_obj_coeff_sum)
else:
f.append(0.0)
# Feature 3
if neg_obj_coeff_sum > 0:
f.append(abs(var.obj_coeff) / neg_obj_coeff_sum)
else:
f.append(0.0)
if var.value is not None:
# Feature 37
f.append(
min(
var.value - np.floor(var.value),
np.ceil(var.value) - var.value,
)
)
if var.sa_obj_up is not None:
assert var.obj_coeff is not None
assert var.sa_obj_down is not None
# Convert inf into large finite numbers
sa_obj_down = max(-1e20, var.sa_obj_down)
sa_obj_up = min(1e20, var.sa_obj_up)
# Features 44 and 46
f.append(np.sign(var.sa_obj_up))
f.append(np.sign(var.sa_obj_down))
# Feature 47
csign = np.sign(var.obj_coeff)
if csign != 0 and ((var.obj_coeff - sa_obj_down) / csign) > 0.001:
f.append(log((var.obj_coeff - sa_obj_down) / csign))
else:
f.append(0.0)
# Feature 48
if csign != 0 and ((sa_obj_up - var.obj_coeff) / csign) > 0.001:
f.append(log((sa_obj_up - var.obj_coeff) / csign))
else:
f.append(0.0)
for v in f:
assert isfinite(v), f"non-finite elements detected: {f}"
var.alvarez_2017 = f
def _clip(v: List[float]) -> None:
for (i, vi) in enumerate(v):
if not isfinite(vi):
v[i] = max(min(vi, 1e20), -1e20)