You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
140 lines
5.1 KiB
140 lines
5.1 KiB
# MIPLearn, an extensible framework for Learning-Enhanced Mixed-Integer Optimization
|
|
# Copyright (C) 2019-2020 Argonne National Laboratory. All rights reserved.
|
|
# Written by Alinson S. Xavier <axavier@anl.gov>
|
|
|
|
from . import WarmStartComponent, BranchPriorityComponent
|
|
import pyomo.environ as pe
|
|
import numpy as np
|
|
from copy import deepcopy
|
|
import pickle
|
|
from scipy.stats import randint
|
|
from p_tqdm import p_map
|
|
|
|
def _gurobi_factory():
|
|
solver = pe.SolverFactory('gurobi_persistent')
|
|
solver.options["threads"] = 4
|
|
solver.options["Seed"] = randint(low=0, high=1000).rvs()
|
|
return solver
|
|
|
|
|
|
class LearningSolver:
|
|
"""
|
|
Mixed-Integer Linear Programming (MIP) solver that extracts information from previous runs,
|
|
using Machine Learning methods, to accelerate the solution of new (yet unseen) instances.
|
|
"""
|
|
|
|
def __init__(self,
|
|
threads=None,
|
|
time_limit=None,
|
|
gap_limit=None,
|
|
internal_solver_factory=_gurobi_factory,
|
|
components=None,
|
|
mode=None):
|
|
self.is_persistent = None
|
|
self.internal_solver = None
|
|
self.components = components
|
|
self.internal_solver_factory = internal_solver_factory
|
|
self.threads = threads
|
|
self.time_limit = time_limit
|
|
self.gap_limit = gap_limit
|
|
self.tee = False
|
|
|
|
if self.components is not None:
|
|
assert isinstance(self.components, dict)
|
|
else:
|
|
self.components = {
|
|
"warm-start": WarmStartComponent(),
|
|
#"branch-priority": BranchPriorityComponent(),
|
|
}
|
|
|
|
if mode is not None:
|
|
assert mode in ["exact", "heuristic"]
|
|
for component in self.components.values():
|
|
component.mode = mode
|
|
|
|
def _create_solver(self):
|
|
self.internal_solver = self.internal_solver_factory()
|
|
self.is_persistent = hasattr(self.internal_solver, "set_instance")
|
|
if self.threads is not None:
|
|
self.internal_solver.options["Threads"] = self.threads
|
|
if self.time_limit is not None:
|
|
self.internal_solver.options["TimeLimit"] = self.time_limit
|
|
if self.gap_limit is not None:
|
|
self.internal_solver.options["MIPGap"] = self.gap_limit
|
|
|
|
def solve(self, instance, tee=False):
|
|
model = instance.to_model()
|
|
self.tee = tee
|
|
|
|
self._create_solver()
|
|
if self.is_persistent:
|
|
self.internal_solver.set_instance(model)
|
|
|
|
for component in self.components.values():
|
|
component.before_solve(self, instance, model)
|
|
|
|
is_warm_start_available = False
|
|
if "warm-start" in self.components.keys():
|
|
if self.components["warm-start"].is_warm_start_available:
|
|
is_warm_start_available = True
|
|
if self.is_persistent:
|
|
solve_results = self.internal_solver.solve(tee=tee, warmstart=is_warm_start_available)
|
|
else:
|
|
solve_results = self.internal_solver.solve(model, tee=tee, warmstart=is_warm_start_available)
|
|
|
|
solve_results["Solver"][0]["Nodes"] = self.internal_solver._solver_model.getAttr("NodeCount")
|
|
|
|
for component in self.components.values():
|
|
component.after_solve(self, instance, model)
|
|
|
|
return solve_results
|
|
|
|
def parallel_solve(self,
|
|
instances,
|
|
n_jobs=4,
|
|
label="Solve",
|
|
collect_training_data=True,
|
|
):
|
|
self.internal_solver = None
|
|
|
|
def _process(instance):
|
|
solver = deepcopy(self)
|
|
results = solver.solve(instance)
|
|
solver.internal_solver = None
|
|
if not collect_training_data:
|
|
solver.components = {}
|
|
return solver, results
|
|
|
|
solver_result_pairs = p_map(_process, instances, num_cpus=n_jobs, desc=label)
|
|
subsolvers = [p[0] for p in solver_result_pairs]
|
|
results = [p[1] for p in solver_result_pairs]
|
|
|
|
for (name, component) in self.components.items():
|
|
subcomponents = [subsolver.components[name]
|
|
for subsolver in subsolvers
|
|
if name in subsolver.components.keys()]
|
|
self.components[name].merge(subcomponents)
|
|
|
|
return results
|
|
|
|
def fit(self, n_jobs=1):
|
|
for component in self.components.values():
|
|
component.fit(self, n_jobs=n_jobs)
|
|
|
|
def save_state(self, filename):
|
|
with open(filename, "wb") as file:
|
|
pickle.dump({
|
|
"version": 2,
|
|
"components": self.components,
|
|
}, file)
|
|
|
|
def load_state(self, filename):
|
|
with open(filename, "rb") as file:
|
|
data = pickle.load(file)
|
|
assert data["version"] == 2
|
|
for (component_name, component) in data["components"].items():
|
|
if component_name not in self.components.keys():
|
|
continue
|
|
else:
|
|
self.components[component_name].merge([component])
|