@ -130,6 +130,7 @@
< li class = "third-level" > < a href = "#decision-variables" > Decision variables< / a > < / li >
< li class = "third-level" > < a href = "#decision-variables" > Decision variables< / a > < / li >
< li class = "third-level" > < a href = "#objective-function" > Objective function< / a > < / li >
< li class = "third-level" > < a href = "#objective-function" > Objective function< / a > < / li >
< li class = "third-level" > < a href = "#constraints" > Constraints< / a > < / li >
< li class = "third-level" > < a href = "#constraints" > Constraints< / a > < / li >
< li class = "third-level" > < a href = "#complete-optimization-model" > Complete optimization model< / a > < / li >
< / ul >
< / ul >
< / div > < / div >
< / div > < / div >
< div class = "col-md-9" role = "main" >
< div class = "col-md-9" role = "main" >
@ -160,7 +161,7 @@
< p > < strong > Products:< / strong > < / p >
< p > < strong > Products:< / strong > < / p >
< ul >
< ul >
< li > $\alpha_{pm}$ - Amount of material $m$ recovered by plant $t$ for each tonne of original material (< code > tonne/tonne< / code > )< / li >
< li > $\alpha_{pm}$ - Amount of material $m$ recovered by plant $t$ for each tonne of original material (< code > tonne/tonne< / code > )< / li >
< li > $m^\text{initial}_{lt}$ - Amount of original material to be recycled at location $l$ during time $t$ (tonne)< / li >
< li > $m^\text{initial}_{lt}$ - Amount of original material to be recycled at location $l$ during time $t$ (< code > tonne< / code > )< / li >
< / ul >
< / ul >
< p > < strong > Transportation:< / strong > < / p >
< p > < strong > Transportation:< / strong > < / p >
< ul >
< ul >
@ -213,7 +214,7 @@ In the third line, we have the disposal costs.</p>
< / ul >
< / ul >
< p >
< p >
< script type = "math/tex; mode=display" > \ b e g i n { a l i g n }
< script type = "math/tex; mode=display" > \ b e g i n { a l i g n }
& \sum_{l \in L} y_{lpt} \leq m^\text{base }_p x_p + \sum_{i=1}^t w_p
& \sum_{l \in L} y_{lpt} \leq m^\text{min }_p x_p + \sum_{i=1}^t w_p
& \forall p \in P, t \in T
& \forall p \in P, t \in T
\end{align}< / script >
\end{align}< / script >
< / p >
< / p >
@ -270,9 +271,53 @@ In the third line, we have the disposal costs.</p>
& \forall p \in P, t \in T \\
& \forall p \in P, t \in T \\
& y_{lpt} \geq 0
& y_{lpt} \geq 0
& \forall l \in L, p \in P, t \in T \\
& \forall l \in L, p \in P, t \in T \\
& m^\text{disp}_{p mt} \geq z_{mpt} \geq 0
& m^\text{disp}_{mp t} \geq z_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T \\
& \forall m \in M, p \in P, t \in T
\end{align}< / script >
\end{align}< / script >
< / p >
< h3 id = "complete-optimization-model" > Complete optimization model< / h3 >
< p >
< script type = "math/tex; mode=display" > \ b e g i n { a l i g n * }
\text{minimize} \;\; &
\sum_{t \in T} \sum_{p \in P} \left[
c^\text{open}_{pt} u_{pt} +
c^\text{f-base}_{pt} x_{pt} +
\sum_{i=1}^t c^\text{f-exp}_{pt} w_{pi} +
c^{\text{exp}}_{pt} w_{pt}
\right] + \\
&
\sum_{t \in T} \sum_{l \in L} \sum_{p \in P} \left[
c^{\text{tr}}_t d_{lp} + c^{\text{var}}_{pt}
\right] y_{lpt} + \\
&
\sum_{t \in T} \sum_{p \in P} \sum_{m \in M} c^{\text{disp}}_{pmt} z_{pmt} \\
\text{subject to } & \sum_{p \in P} y_{lpt} = m^\text{initial}_{lt}
& \forall l \in L, t \in T \\
& \sum_{l \in L} y_{lpt} \leq m^\text{min}_p x_p + \sum_{i=1}^t w_p
& \forall p \in P, t \in T \\
& \sum_{i=1}^t w_p \leq m^\text{max}_p x_p
& \forall p \in P, t \in T \\
& q_{mpt} = \alpha_{pm} \sum_{l \in L} y_{lpt}
& \forall m \in M, p \in P, t \in T \\
& q_{mpt} = z_{mpt}
& \forall m \in M, p \in P, t \in T \\
& x_{pt} = x_{p,t-1} + u_{pt}
& \forall p \in P, t \in T \setminus \{1\} \\
& x_{p,1} = u_{p,1}
& \forall p \in P \\
& q_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T \\
& u_{pt} \in \{0,1\}
& \forall p \in P, t \in T \\
& w_{pt} \geq 0
& \forall p \in P, t \in T \\
& x_{pt} \in \{0,1\}
& \forall p \in P, t \in T \\
& y_{lpt} \geq 0
& \forall l \in L, p \in P, t \in T \\
& m^\text{disp}_{mpt} \geq z_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T
\end{align*}< / script >
< / p > < / div >
< / p > < / div >