Circular: Implement driving distances

This commit is contained in:
2025-03-28 13:46:45 -05:00
parent 17a870967b
commit 3d36caa507
10 changed files with 141 additions and 8 deletions

View File

@@ -9,7 +9,16 @@ function parse(json)::Instance
# Read parameters
time_horizon = json["parameters"]["time horizon (years)"]
building_period = json["parameters"]["building period (years)"]
distance_metric = json["parameters"]["distance metric"]
# Read distance metric
distance_metric_str = lowercase(json["parameters"]["distance metric"])
if distance_metric_str == "driving"
distance_metric = KnnDrivingDistance()
elseif distance_metric_str == "euclidean"
distance_metric = EuclideanDistance()
else
error("Invalid distance metric: $distance_metric_str")
end
timeseries(x::Union{Nothing,Number}) = repeat([x], time_horizon)
timeseries(x::Array) = x

View File

@@ -1,5 +1,14 @@
using OrderedCollections
abstract type DistanceMetric end
Base.@kwdef mutable struct KnnDrivingDistance <: DistanceMetric
tree = nothing
ratios = nothing
end
mutable struct EuclideanDistance <: DistanceMetric end
Base.@kwdef struct Product
name::String
tr_cost::Vector{Float64}
@@ -48,7 +57,7 @@ Base.@kwdef struct Instance
building_period::Vector{Int}
centers_by_name::OrderedDict{String,Center}
centers::Vector{Center}
distance_metric::String
distance_metric::DistanceMetric
products_by_name::OrderedDict{String,Product}
products::Vector{Product}
time_horizon::Int

View File

@@ -60,7 +60,13 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
# Distances
model.ext[:distances] = distances = Dict()
for (p1, p2, m) in E
d = _calculate_distance(p1.latitude, p1.longitude, p2.latitude, p2.longitude)
d = _calculate_distance(
p1.latitude,
p1.longitude,
p2.latitude,
p2.longitude,
instance.distance_metric,
)
distances[p1, p2, m] = d
end

View File

@@ -1,11 +1,110 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Copyright (C) 2020-2025, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
using NearestNeighbors
using DataFrames
using CRC
using ZipFile
using Statistics
using TimerOutputs
function _calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
crc32 = crc(CRC_32)
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
::EuclideanDistance,
)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
end
function _download_file(url, output, expected_crc32)::Nothing
if isfile(output)
return
end
mkpath(dirname(output))
@info "Downloading: $url"
fname = download(url)
actual_crc32 = open(crc32, fname)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
cp(fname, output)
return
end
function _download_zip(url, outputdir, expected_output_file, expected_crc32)::Nothing
if isfile(expected_output_file)
return
end
mkpath(outputdir)
@info "Downloading: $url"
zip_filename = download(url)
actual_crc32 = open(crc32, zip_filename)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
open(zip_filename) do zip_file
zr = ZipFile.Reader(zip_file)
for file in zr.files
open(joinpath(outputdir, file.name), "w") do output_file
write(output_file, read(file))
end
end
end
return
end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
metric::KnnDrivingDistance,
)::Float64
if metric.tree === nothing
basedir = joinpath(dirname(@__FILE__), "data")
csv_filename = joinpath(basedir, "dist_driving.csv")
# Download pre-computed driving data
@timeit "Download data" begin
if !isfile(csv_filename)
_download_zip(
"https://axavier.org/RELOG/0.6/data/dist_driving_0b9a6ad6.zip",
basedir,
csv_filename,
0x0b9a6ad6,
)
end
end
@timeit "Fit KNN model" begin
df = DataFrame(CSV.File(csv_filename, missingstring = "NaN"))
dropmissing!(df)
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
metric.ratios = Matrix(df[!, [:ratio]])
metric.tree = KDTree(coords)
end
end
@timeit "Compute Euclidean distance" begin
dist_euclidean = _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
EuclideanDistance(),
)
end
@timeit "Predict driving distance" begin
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
ratio_pred = mean(metric.ratios[idxs])
dist_pred = round(dist_euclidean * ratio_pred, digits = 3)
isfinite(dist_pred) || error("non-finite distance detected: $dist_pred")
end
return dist_pred
end