Switch from Euclidean to approximate driving distance

feature/driving
Alinson S. Xavier 3 years ago
parent 23b3b33146
commit 48bd3c403f
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -11,6 +11,10 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
# [0.6.0] -- 2022-12-15
### Changed
- Switch from Euclidean distance to approximate driving distance
## [0.5.2] -- 2022-08-26
### Changed
- Update to JuMP 1.x

@ -1,7 +1,7 @@
name = "RELOG"
uuid = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
authors = ["Alinson S Xavier <axavier@anl.gov>"]
version = "0.5.2"
version = "0.6.0"
[deps]
CRC = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
@ -18,6 +18,7 @@ JSONSchema = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
NearestNeighbors = "b8a86587-4115-5ab1-83bc-aa920d37bbce"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"

@ -7,7 +7,7 @@ To use RELOG, the first step is to install the [Julia programming language](http
```julia
using Pkg
Pkg.add(name="RELOG", version="0.5")
Pkg.add(name="RELOG", version="0.6")
```
After the package and all its dependencies have been installed, please run the RELOG test suite, as shown below, to make sure that the package has been correctly installed:

@ -5,19 +5,19 @@
module RELOG
include("instance/structs.jl")
include("graph/structs.jl")
include("instance/geodb.jl")
include("graph/dist.jl")
include("graph/build.jl")
include("graph/csv.jl")
include("instance/compress.jl")
include("instance/geodb.jl")
include("instance/parse.jl")
include("instance/validate.jl")
include("model/build.jl")
include("model/getsol.jl")
include("model/solve.jl")
include("model/resolve.jl")
include("model/solve.jl")
include("reports/plant_emissions.jl")
include("reports/plant_outputs.jl")
include("reports/plants.jl")

@ -2,14 +2,6 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 2)
end
function build_graph(instance::Instance)::Graph
arcs = []
next_index = 0
@ -48,13 +40,15 @@ function build_graph(instance::Instance)::Graph
end
# Build arcs from collection centers to plants, and from one plant to another
metric = _KnnDrivingDistance()
for source in [collection_shipping_nodes; plant_shipping_nodes]
for dest in process_nodes_by_input_product[source.product]
distance = calculate_distance(
distance = _calculate_distance(
source.location.latitude,
source.location.longitude,
dest.location.latitude,
dest.location.longitude,
metric,
)
values = Dict("distance" => distance)
arc = Arc(source, dest, values)

@ -0,0 +1,69 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
using NearestNeighbors
using DataFrames
Base.@kwdef mutable struct _KnnDrivingDistance
tree = nothing
ratios = nothing
end
mutable struct _EuclideanDistance end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
::_EuclideanDistance,
)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
metric::_KnnDrivingDistance,
)::Float64
if metric.tree === nothing
basedir = joinpath(dirname(@__FILE__), "..", "..", "data")
csv_filename = joinpath(basedir, "dist_driving.csv")
# Download pre-computed driving data
if !isfile(csv_filename)
_download_zip(
"https://axavier.org/RELOG/0.6/data/dist_driving_0b9a6ad6.zip",
basedir,
csv_filename,
0x0b9a6ad6,
)
end
# Fit kNN model
df = DataFrame(CSV.File(csv_filename))
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
metric.ratios = Matrix(df[!, [:ratio]])
metric.tree = KDTree(coords)
end
# Compute Euclidean distance
dist_euclidean = _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
_EuclideanDistance(),
)
# Predict ratio
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
ratio_pred = mean(metric.ratios[idxs])
return round(dist_euclidean * ratio_pred, digits = 3)
end

@ -21,7 +21,7 @@ using RELOG
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1095.62
@test node.outgoing_arcs[1].values["distance"] == 1695.364
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"

@ -0,0 +1,25 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
@testset "KnnDrivingDistance" begin
# Euclidean distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG._EuclideanDistance(),
) == 265.818
# Approximate driving distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG._KnnDrivingDistance(),
) == 316.43
end

@ -11,6 +11,7 @@ using Test
end
@testset "Graph" begin
include("graph/build_test.jl")
include("graph/dist_test.jl")
end
@testset "Model" begin
include("model/build_test.jl")

Loading…
Cancel
Save