mirror of https://github.com/ANL-CEEESA/RELOG.git
parent
23b3b33146
commit
48bd3c403f
@ -0,0 +1,69 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using Geodesy
|
||||
using NearestNeighbors
|
||||
using DataFrames
|
||||
|
||||
Base.@kwdef mutable struct _KnnDrivingDistance
|
||||
tree = nothing
|
||||
ratios = nothing
|
||||
end
|
||||
|
||||
mutable struct _EuclideanDistance end
|
||||
|
||||
function _calculate_distance(
|
||||
source_lat,
|
||||
source_lon,
|
||||
dest_lat,
|
||||
dest_lon,
|
||||
::_EuclideanDistance,
|
||||
)::Float64
|
||||
x = LLA(source_lat, source_lon, 0.0)
|
||||
y = LLA(dest_lat, dest_lon, 0.0)
|
||||
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
|
||||
end
|
||||
|
||||
function _calculate_distance(
|
||||
source_lat,
|
||||
source_lon,
|
||||
dest_lat,
|
||||
dest_lon,
|
||||
metric::_KnnDrivingDistance,
|
||||
)::Float64
|
||||
if metric.tree === nothing
|
||||
basedir = joinpath(dirname(@__FILE__), "..", "..", "data")
|
||||
csv_filename = joinpath(basedir, "dist_driving.csv")
|
||||
|
||||
# Download pre-computed driving data
|
||||
if !isfile(csv_filename)
|
||||
_download_zip(
|
||||
"https://axavier.org/RELOG/0.6/data/dist_driving_0b9a6ad6.zip",
|
||||
basedir,
|
||||
csv_filename,
|
||||
0x0b9a6ad6,
|
||||
)
|
||||
end
|
||||
|
||||
# Fit kNN model
|
||||
df = DataFrame(CSV.File(csv_filename))
|
||||
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
|
||||
metric.ratios = Matrix(df[!, [:ratio]])
|
||||
metric.tree = KDTree(coords)
|
||||
end
|
||||
|
||||
# Compute Euclidean distance
|
||||
dist_euclidean = _calculate_distance(
|
||||
source_lat,
|
||||
source_lon,
|
||||
dest_lat,
|
||||
dest_lon,
|
||||
_EuclideanDistance(),
|
||||
)
|
||||
|
||||
# Predict ratio
|
||||
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
|
||||
ratio_pred = mean(metric.ratios[idxs])
|
||||
return round(dist_euclidean * ratio_pred, digits = 3)
|
||||
end
|
@ -0,0 +1,25 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using RELOG
|
||||
|
||||
@testset "KnnDrivingDistance" begin
|
||||
# Euclidean distance between Chicago and Indianapolis
|
||||
@test RELOG._calculate_distance(
|
||||
41.866,
|
||||
-87.656,
|
||||
39.764,
|
||||
-86.148,
|
||||
RELOG._EuclideanDistance(),
|
||||
) == 265.818
|
||||
|
||||
# Approximate driving distance between Chicago and Indianapolis
|
||||
@test RELOG._calculate_distance(
|
||||
41.866,
|
||||
-87.656,
|
||||
39.764,
|
||||
-86.148,
|
||||
RELOG._KnnDrivingDistance(),
|
||||
) == 316.43
|
||||
end
|
Loading…
Reference in new issue