Prototype composition model

feature/composition
Alinson S. Xavier 2 years ago
commit 6b1b62c658
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

1
.gitignore vendored

@ -0,0 +1 @@
data

@ -0,0 +1,608 @@
# This file is machine-generated - editing it directly is not advised
julia_version = "1.9.0"
manifest_format = "2.0"
project_hash = "6050446040717864eaea84cf3a5f066d959d36dd"
[[deps.ArgTools]]
uuid = "0dad84c5-d112-42e6-8d28-ef12dabb789f"
version = "1.1.1"
[[deps.Artifacts]]
uuid = "56f22d72-fd6d-98f1-02f0-08ddc0907c33"
[[deps.Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[deps.BenchmarkTools]]
deps = ["JSON", "Logging", "Printf", "Profile", "Statistics", "UUIDs"]
git-tree-sha1 = "f1f03a9fa24271160ed7e73051fba3c1a759b53f"
uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
version = "1.4.0"
[[deps.Bzip2_jll]]
deps = ["Artifacts", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "9e2a6b69137e6969bab0152632dcb3bc108c8bdd"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.8+1"
[[deps.CRC]]
git-tree-sha1 = "b7ba7f0d727433c961909b329c4d2263268da4c9"
uuid = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
version = "4.0.0"
[[deps.CSV]]
deps = ["CodecZlib", "Dates", "FilePathsBase", "InlineStrings", "Mmap", "Parsers", "PooledArrays", "PrecompileTools", "SentinelArrays", "Tables", "Unicode", "WeakRefStrings", "WorkerUtilities"]
git-tree-sha1 = "679e69c611fff422038e9e21e270c4197d49d918"
uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
version = "0.10.12"
[[deps.CodeTracking]]
deps = ["InteractiveUtils", "UUIDs"]
git-tree-sha1 = "c0216e792f518b39b22212127d4a84dc31e4e386"
uuid = "da1fd8a2-8d9e-5ec2-8556-3022fb5608a2"
version = "1.3.5"
[[deps.CodecBzip2]]
deps = ["Bzip2_jll", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "9b1ca1aa6ce3f71b3d1840c538a8210a043625eb"
uuid = "523fee87-0ab8-5b00-afb7-3ecf72e48cfd"
version = "0.8.2"
[[deps.CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "59939d8a997469ee05c4b4944560a820f9ba0d73"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.4"
[[deps.CommonSubexpressions]]
deps = ["MacroTools", "Test"]
git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.3.0"
[[deps.Compat]]
deps = ["TOML", "UUIDs"]
git-tree-sha1 = "c955881e3c981181362ae4088b35995446298b80"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "4.14.0"
weakdeps = ["Dates", "LinearAlgebra"]
[deps.Compat.extensions]
CompatLinearAlgebraExt = "LinearAlgebra"
[[deps.CompilerSupportLibraries_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "1.0.2+0"
[[deps.CoordinateTransformations]]
deps = ["LinearAlgebra", "StaticArrays"]
git-tree-sha1 = "f9d7112bfff8a19a3a4ea4e03a8e6a91fe8456bf"
uuid = "150eb455-5306-5404-9cee-2592286d6298"
version = "0.6.3"
[[deps.Crayons]]
git-tree-sha1 = "249fe38abf76d48563e2f4556bebd215aa317e15"
uuid = "a8cc5b0e-0ffa-5ad4-8c14-923d3ee1735f"
version = "4.1.1"
[[deps.DataAPI]]
git-tree-sha1 = "abe83f3a2f1b857aac70ef8b269080af17764bbe"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.16.0"
[[deps.DataFrames]]
deps = ["Compat", "DataAPI", "DataStructures", "Future", "InlineStrings", "InvertedIndices", "IteratorInterfaceExtensions", "LinearAlgebra", "Markdown", "Missings", "PooledArrays", "PrecompileTools", "PrettyTables", "Printf", "REPL", "Random", "Reexport", "SentinelArrays", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "04c738083f29f86e62c8afc341f0967d8717bdb8"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "1.6.1"
[[deps.DataStructures]]
deps = ["Compat", "InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "1fb174f0d48fe7d142e1109a10636bc1d14f5ac2"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.18.17"
[[deps.DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[deps.Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[deps.DiffResults]]
deps = ["StaticArraysCore"]
git-tree-sha1 = "782dd5f4561f5d267313f23853baaaa4c52ea621"
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
version = "1.1.0"
[[deps.DiffRules]]
deps = ["IrrationalConstants", "LogExpFunctions", "NaNMath", "Random", "SpecialFunctions"]
git-tree-sha1 = "23163d55f885173722d1e4cf0f6110cdbaf7e272"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "1.15.1"
[[deps.Distances]]
deps = ["LinearAlgebra", "Statistics", "StatsAPI"]
git-tree-sha1 = "66c4c81f259586e8f002eacebc177e1fb06363b0"
uuid = "b4f34e82-e78d-54a5-968a-f98e89d6e8f7"
version = "0.10.11"
[deps.Distances.extensions]
DistancesChainRulesCoreExt = "ChainRulesCore"
DistancesSparseArraysExt = "SparseArrays"
[deps.Distances.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[deps.DocStringExtensions]]
deps = ["LibGit2"]
git-tree-sha1 = "2fb1e02f2b635d0845df5d7c167fec4dd739b00d"
uuid = "ffbed154-4ef7-542d-bbb7-c09d3a79fcae"
version = "0.9.3"
[[deps.Downloads]]
deps = ["ArgTools", "FileWatching", "LibCURL", "NetworkOptions"]
uuid = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
version = "1.6.0"
[[deps.FilePathsBase]]
deps = ["Compat", "Dates", "Mmap", "Printf", "Test", "UUIDs"]
git-tree-sha1 = "9f00e42f8d99fdde64d40c8ea5d14269a2e2c1aa"
uuid = "48062228-2e41-5def-b9a4-89aafe57970f"
version = "0.9.21"
[[deps.FileWatching]]
uuid = "7b1f6079-737a-58dc-b8bc-7a2ca5c1b5ee"
[[deps.ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "LinearAlgebra", "LogExpFunctions", "NaNMath", "Preferences", "Printf", "Random", "SpecialFunctions"]
git-tree-sha1 = "cf0fe81336da9fb90944683b8c41984b08793dad"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.36"
weakdeps = ["StaticArrays"]
[deps.ForwardDiff.extensions]
ForwardDiffStaticArraysExt = "StaticArrays"
[[deps.Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[deps.Geodesy]]
deps = ["CoordinateTransformations", "Dates", "LinearAlgebra", "StaticArrays"]
git-tree-sha1 = "ed98a4429bf0a033ccc5e036120181dd52f06d31"
uuid = "0ef565a4-170c-5f04-8de2-149903a85f3d"
version = "1.1.0"
[[deps.Gurobi]]
deps = ["LazyArtifacts", "Libdl", "MathOptInterface"]
git-tree-sha1 = "5995b72d385235f3fe55f8f0c4ad61049f867814"
uuid = "2e9cd046-0924-5485-92f1-d5272153d98b"
version = "1.2.1"
[[deps.InlineStrings]]
deps = ["Parsers"]
git-tree-sha1 = "9cc2baf75c6d09f9da536ddf58eb2f29dedaf461"
uuid = "842dd82b-1e85-43dc-bf29-5d0ee9dffc48"
version = "1.4.0"
[[deps.InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[deps.InvertedIndices]]
git-tree-sha1 = "0dc7b50b8d436461be01300fd8cd45aa0274b038"
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
version = "1.3.0"
[[deps.IrrationalConstants]]
git-tree-sha1 = "630b497eafcc20001bba38a4651b327dcfc491d2"
uuid = "92d709cd-6900-40b7-9082-c6be49f344b6"
version = "0.2.2"
[[deps.IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[deps.JLLWrappers]]
deps = ["Artifacts", "Preferences"]
git-tree-sha1 = "7e5d6779a1e09a36db2a7b6cff50942a0a7d0fca"
uuid = "692b3bcd-3c85-4b1f-b108-f13ce0eb3210"
version = "1.5.0"
[[deps.JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "31e996f0a15c7b280ba9f76636b3ff9e2ae58c9a"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.4"
[[deps.JuMP]]
deps = ["LinearAlgebra", "MacroTools", "MathOptInterface", "MutableArithmetics", "OrderedCollections", "PrecompileTools", "Printf", "SparseArrays"]
git-tree-sha1 = "4e44cff1595c6c02cdbca4e87ce376e63c33a584"
uuid = "4076af6c-e467-56ae-b986-b466b2749572"
version = "1.20.0"
[deps.JuMP.extensions]
JuMPDimensionalDataExt = "DimensionalData"
[deps.JuMP.weakdeps]
DimensionalData = "0703355e-b756-11e9-17c0-8b28908087d0"
[[deps.JuliaInterpreter]]
deps = ["CodeTracking", "InteractiveUtils", "Random", "UUIDs"]
git-tree-sha1 = "7b762d81887160169ddfc93a47e5fd7a6a3e78ef"
uuid = "aa1ae85d-cabe-5617-a682-6adf51b2e16a"
version = "0.9.29"
[[deps.LaTeXStrings]]
git-tree-sha1 = "50901ebc375ed41dbf8058da26f9de442febbbec"
uuid = "b964fa9f-0449-5b57-a5c2-d3ea65f4040f"
version = "1.3.1"
[[deps.LazyArtifacts]]
deps = ["Artifacts", "Pkg"]
uuid = "4af54fe1-eca0-43a8-85a7-787d91b784e3"
[[deps.LibCURL]]
deps = ["LibCURL_jll", "MozillaCACerts_jll"]
uuid = "b27032c2-a3e7-50c8-80cd-2d36dbcbfd21"
version = "0.6.3"
[[deps.LibCURL_jll]]
deps = ["Artifacts", "LibSSH2_jll", "Libdl", "MbedTLS_jll", "Zlib_jll", "nghttp2_jll"]
uuid = "deac9b47-8bc7-5906-a0fe-35ac56dc84c0"
version = "7.84.0+0"
[[deps.LibGit2]]
deps = ["Base64", "NetworkOptions", "Printf", "SHA"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[deps.LibSSH2_jll]]
deps = ["Artifacts", "Libdl", "MbedTLS_jll"]
uuid = "29816b5a-b9ab-546f-933c-edad1886dfa8"
version = "1.10.2+0"
[[deps.Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[deps.LinearAlgebra]]
deps = ["Libdl", "OpenBLAS_jll", "libblastrampoline_jll"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[deps.LogExpFunctions]]
deps = ["DocStringExtensions", "IrrationalConstants", "LinearAlgebra"]
git-tree-sha1 = "18144f3e9cbe9b15b070288eef858f71b291ce37"
uuid = "2ab3a3ac-af41-5b50-aa03-7779005ae688"
version = "0.3.27"
[deps.LogExpFunctions.extensions]
LogExpFunctionsChainRulesCoreExt = "ChainRulesCore"
LogExpFunctionsChangesOfVariablesExt = "ChangesOfVariables"
LogExpFunctionsInverseFunctionsExt = "InverseFunctions"
[deps.LogExpFunctions.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
ChangesOfVariables = "9e997f8a-9a97-42d5-a9f1-ce6bfc15e2c0"
InverseFunctions = "3587e190-3f89-42d0-90ee-14403ec27112"
[[deps.Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[deps.LoweredCodeUtils]]
deps = ["JuliaInterpreter"]
git-tree-sha1 = "31e27f0b0bf0df3e3e951bfcc43fe8c730a219f6"
uuid = "6f1432cf-f94c-5a45-995e-cdbf5db27b0b"
version = "2.4.5"
[[deps.MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "2fa9ee3e63fd3a4f7a9a4f4744a52f4856de82df"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.13"
[[deps.Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[deps.MathOptInterface]]
deps = ["BenchmarkTools", "CodecBzip2", "CodecZlib", "DataStructures", "ForwardDiff", "JSON", "LinearAlgebra", "MutableArithmetics", "NaNMath", "OrderedCollections", "PrecompileTools", "Printf", "SparseArrays", "SpecialFunctions", "Test", "Unicode"]
git-tree-sha1 = "e8b98c868029d007102dc5f98986c81f33b0ec37"
uuid = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
version = "1.26.0"
[[deps.MbedTLS_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.28.2+0"
[[deps.Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "f66bdc5de519e8f8ae43bdc598782d35a25b1272"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "1.1.0"
[[deps.Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[deps.MozillaCACerts_jll]]
uuid = "14a3606d-f60d-562e-9121-12d972cd8159"
version = "2022.10.11"
[[deps.MutableArithmetics]]
deps = ["LinearAlgebra", "SparseArrays", "Test"]
git-tree-sha1 = "302fd161eb1c439e4115b51ae456da4e9984f130"
uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
version = "1.4.1"
[[deps.NaNMath]]
deps = ["OpenLibm_jll"]
git-tree-sha1 = "0877504529a3e5c3343c6f8b4c0381e57e4387e4"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "1.0.2"
[[deps.NearestNeighbors]]
deps = ["Distances", "StaticArrays"]
git-tree-sha1 = "ded64ff6d4fdd1cb68dfcbb818c69e144a5b2e4c"
uuid = "b8a86587-4115-5ab1-83bc-aa920d37bbce"
version = "0.4.16"
[[deps.NetworkOptions]]
uuid = "ca575930-c2e3-43a9-ace4-1e988b2c1908"
version = "1.2.0"
[[deps.OpenBLAS_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "Libdl"]
uuid = "4536629a-c528-5b80-bd46-f80d51c5b363"
version = "0.3.21+4"
[[deps.OpenLibm_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "05823500-19ac-5b8b-9628-191a04bc5112"
version = "0.8.1+0"
[[deps.OpenSpecFun_jll]]
deps = ["Artifacts", "CompilerSupportLibraries_jll", "JLLWrappers", "Libdl", "Pkg"]
git-tree-sha1 = "13652491f6856acfd2db29360e1bbcd4565d04f1"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.5+0"
[[deps.OrderedCollections]]
git-tree-sha1 = "dfdf5519f235516220579f949664f1bf44e741c5"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.6.3"
[[deps.Parsers]]
deps = ["Dates", "PrecompileTools", "UUIDs"]
git-tree-sha1 = "8489905bcdbcfac64d1daa51ca07c0d8f0283821"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "2.8.1"
[[deps.Pkg]]
deps = ["Artifacts", "Dates", "Downloads", "FileWatching", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "Serialization", "TOML", "Tar", "UUIDs", "p7zip_jll"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
version = "1.9.0"
[[deps.PooledArrays]]
deps = ["DataAPI", "Future"]
git-tree-sha1 = "36d8b4b899628fb92c2749eb488d884a926614d3"
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
version = "1.4.3"
[[deps.PrecompileTools]]
deps = ["Preferences"]
git-tree-sha1 = "03b4c25b43cb84cee5c90aa9b5ea0a78fd848d2f"
uuid = "aea7be01-6a6a-4083-8856-8a6e6704d82a"
version = "1.2.0"
[[deps.Preferences]]
deps = ["TOML"]
git-tree-sha1 = "00805cd429dcb4870060ff49ef443486c262e38e"
uuid = "21216c6a-2e73-6563-6e65-726566657250"
version = "1.4.1"
[[deps.PrettyTables]]
deps = ["Crayons", "LaTeXStrings", "Markdown", "PrecompileTools", "Printf", "Reexport", "StringManipulation", "Tables"]
git-tree-sha1 = "88b895d13d53b5577fd53379d913b9ab9ac82660"
uuid = "08abe8d2-0d0c-5749-adfa-8a2ac140af0d"
version = "2.3.1"
[[deps.Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[deps.Profile]]
deps = ["Printf"]
uuid = "9abbd945-dff8-562f-b5e8-e1ebf5ef1b79"
[[deps.REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets", "Unicode"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[deps.Random]]
deps = ["SHA", "Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[deps.Reexport]]
git-tree-sha1 = "45e428421666073eab6f2da5c9d310d99bb12f9b"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "1.2.2"
[[deps.Requires]]
deps = ["UUIDs"]
git-tree-sha1 = "838a3a4188e2ded87a4f9f184b4b0d78a1e91cb7"
uuid = "ae029012-a4dd-5104-9daa-d747884805df"
version = "1.3.0"
[[deps.Revise]]
deps = ["CodeTracking", "Distributed", "FileWatching", "JuliaInterpreter", "LibGit2", "LoweredCodeUtils", "OrderedCollections", "Pkg", "REPL", "Requires", "UUIDs", "Unicode"]
git-tree-sha1 = "12aa2d7593df490c407a3bbd8b86b8b515017f3e"
uuid = "295af30f-e4ad-537b-8983-00126c2a3abe"
version = "3.5.14"
[[deps.SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
version = "0.7.0"
[[deps.SentinelArrays]]
deps = ["Dates", "Random"]
git-tree-sha1 = "0e7508ff27ba32f26cd459474ca2ede1bc10991f"
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
version = "1.4.1"
[[deps.Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[deps.Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[deps.SortingAlgorithms]]
deps = ["DataStructures"]
git-tree-sha1 = "66e0a8e672a0bdfca2c3f5937efb8538b9ddc085"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "1.2.1"
[[deps.SparseArrays]]
deps = ["Libdl", "LinearAlgebra", "Random", "Serialization", "SuiteSparse_jll"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[deps.SpecialFunctions]]
deps = ["IrrationalConstants", "LogExpFunctions", "OpenLibm_jll", "OpenSpecFun_jll"]
git-tree-sha1 = "e2cfc4012a19088254b3950b85c3c1d8882d864d"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "2.3.1"
[deps.SpecialFunctions.extensions]
SpecialFunctionsChainRulesCoreExt = "ChainRulesCore"
[deps.SpecialFunctions.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
[[deps.StaticArrays]]
deps = ["LinearAlgebra", "PrecompileTools", "Random", "StaticArraysCore"]
git-tree-sha1 = "bf074c045d3d5ffd956fa0a461da38a44685d6b2"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "1.9.3"
[deps.StaticArrays.extensions]
StaticArraysChainRulesCoreExt = "ChainRulesCore"
StaticArraysStatisticsExt = "Statistics"
[deps.StaticArrays.weakdeps]
ChainRulesCore = "d360d2e6-b24c-11e9-a2a3-2a2ae2dbcce4"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[deps.StaticArraysCore]]
git-tree-sha1 = "36b3d696ce6366023a0ea192b4cd442268995a0d"
uuid = "1e83bf80-4336-4d27-bf5d-d5a4f845583c"
version = "1.4.2"
[[deps.Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
version = "1.9.0"
[[deps.StatsAPI]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "1ff449ad350c9c4cbc756624d6f8a8c3ef56d3ed"
uuid = "82ae8749-77ed-4fe6-ae5f-f523153014b0"
version = "1.7.0"
[[deps.StringManipulation]]
deps = ["PrecompileTools"]
git-tree-sha1 = "a04cabe79c5f01f4d723cc6704070ada0b9d46d5"
uuid = "892a3eda-7b42-436c-8928-eab12a02cf0e"
version = "0.3.4"
[[deps.SuiteSparse_jll]]
deps = ["Artifacts", "Libdl", "Pkg", "libblastrampoline_jll"]
uuid = "bea87d4a-7f5b-5778-9afe-8cc45184846c"
version = "5.10.1+6"
[[deps.TOML]]
deps = ["Dates"]
uuid = "fa267f1f-6049-4f14-aa54-33bafae1ed76"
version = "1.0.3"
[[deps.TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "c06b2f539df1c6efa794486abfb6ed2022561a39"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.1"
[[deps.Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "OrderedCollections", "TableTraits"]
git-tree-sha1 = "cb76cf677714c095e535e3501ac7954732aeea2d"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.11.1"
[[deps.Tar]]
deps = ["ArgTools", "SHA"]
uuid = "a4e569a6-e804-4fa4-b0f3-eef7a1d5b13e"
version = "1.10.0"
[[deps.Test]]
deps = ["InteractiveUtils", "Logging", "Random", "Serialization"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[deps.TranscodingStreams]]
git-tree-sha1 = "54194d92959d8ebaa8e26227dbe3cdefcdcd594f"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.10.3"
weakdeps = ["Random", "Test"]
[deps.TranscodingStreams.extensions]
TestExt = ["Test", "Random"]
[[deps.UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[deps.Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[deps.WeakRefStrings]]
deps = ["DataAPI", "InlineStrings", "Parsers"]
git-tree-sha1 = "b1be2855ed9ed8eac54e5caff2afcdb442d52c23"
uuid = "ea10d353-3f73-51f8-a26c-33c1cb351aa5"
version = "1.4.2"
[[deps.WorkerUtilities]]
git-tree-sha1 = "cd1659ba0d57b71a464a29e64dbc67cfe83d54e7"
uuid = "76eceee3-57b5-4d4a-8e66-0e911cebbf60"
version = "1.6.1"
[[deps.ZipFile]]
deps = ["Libdl", "Printf", "Zlib_jll"]
git-tree-sha1 = "f492b7fe1698e623024e873244f10d89c95c340a"
uuid = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
version = "0.10.1"
[[deps.Zlib_jll]]
deps = ["Libdl"]
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.13+0"
[[deps.libblastrampoline_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850b90-86db-534c-a0d3-1478176c7d93"
version = "5.7.0+0"
[[deps.nghttp2_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "8e850ede-7688-5339-a07c-302acd2aaf8d"
version = "1.48.0+0"
[[deps.p7zip_jll]]
deps = ["Artifacts", "Libdl"]
uuid = "3f19e933-33d8-53b3-aaab-bd5110c3b7a0"
version = "17.4.0+0"

@ -0,0 +1,13 @@
[deps]
CRC = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
Geodesy = "0ef565a4-170c-5f04-8de2-149903a85f3d"
Gurobi = "2e9cd046-0924-5485-92f1-d5272153d98b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
NearestNeighbors = "b8a86587-4115-5ab1-83bc-aa920d37bbce"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"

@ -0,0 +1,107 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020-2024, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
using NearestNeighbors
using DataFrames
using CRC
using ZipFile
using Statistics
crc32 = crc(CRC_32)
abstract type DistanceMetric end
Base.@kwdef mutable struct KnnDrivingDistance <: DistanceMetric
tree = nothing
ratios = nothing
end
mutable struct EuclideanDistance <: DistanceMetric end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
::EuclideanDistance,
)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits=3)
end
function _download_file(url, output, expected_crc32)::Nothing
if isfile(output)
return
end
mkpath(dirname(output))
@info "Downloading: $url"
fname = download(url)
actual_crc32 = open(crc32, fname)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
cp(fname, output)
return
end
function _download_zip(url, outputdir, expected_output_file, expected_crc32)::Nothing
if isfile(expected_output_file)
return
end
mkpath(outputdir)
@info "Downloading: $url"
zip_filename = download(url)
actual_crc32 = open(crc32, zip_filename)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
open(zip_filename) do zip_file
zr = ZipFile.Reader(zip_file)
for file in zr.files
open(joinpath(outputdir, file.name), "w") do output_file
write(output_file, read(file))
end
end
end
return
end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
metric::KnnDrivingDistance,
)::Float64
if metric.tree === nothing
basedir = joinpath(dirname(@__FILE__), "data")
csv_filename = joinpath(basedir, "dist_driving.csv")
# Download pre-computed driving data
if !isfile(csv_filename)
_download_zip(
"https://axavier.org/RELOG/0.6/data/dist_driving_0b9a6ad6.zip",
basedir,
csv_filename,
0x0b9a6ad6,
)
end
# Fit kNN model
df = DataFrame(CSV.File(csv_filename, missingstring="NaN"))
dropmissing!(df)
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
metric.ratios = Matrix(df[!, [:ratio]])
metric.tree = KDTree(coords)
end
# Compute Euclidean distance
dist_euclidean =
_calculate_distance(source_lat, source_lon, dest_lat, dest_lon, EuclideanDistance())
# Predict ratio
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
ratio_pred = mean(metric.ratios[idxs])
dist_pred = round(dist_euclidean * ratio_pred, digits=3)
isfinite(dist_pred) || error("non-finite distance detected: $dist_pred")
return dist_pred
end

@ -0,0 +1,48 @@
# This file extends some JuMP functions so that decision variables can be safely
# replaced by (constant) floating point numbers.
using Printf
using JuMP
using OrderedCollections
import JuMP: value, fix, set_name
function value(x::Float64)
return x
end
function fix(x::Float64, v::Float64; force)
return abs(x - v) < 1e-6 || error("Value mismatch: $x != $v")
end
function set_name(x::Number, n::String)
# nop
end
function _init(model::JuMP.Model, key::Symbol)::OrderedDict
if !(key in keys(object_dictionary(model)))
model[key] = OrderedDict()
end
return model[key]
end
function _set_names!(model::JuMP.Model)
@info "Setting variable and constraint names..."
time_varnames = @elapsed begin
_set_names!(object_dictionary(model))
end
@info @sprintf("Set names in %.2f seconds", time_varnames)
end
function _set_names!(dict::Dict)
for name in keys(dict)
dict[name] isa AbstractDict || continue
for idx in keys(dict[name])
if dict[name][idx] isa AffExpr
continue
end
idx_str = join(map(string, idx), ",")
set_name(dict[name][idx], "$name[$idx_str]")
end
end
end

@ -0,0 +1,159 @@
using JuMP
using OrderedCollections
using Gurobi
using Random
using Printf
dict = OrderedDict
macro pprint(var)
quote
println(string($(QuoteNode(var))))
v = round.($(esc(var)), digits=2)
display(v)
println()
end
end
macro pprint_jump(var)
quote
println(string($(QuoteNode(var))))
v = round.(value.($(esc(var))), digits=2)
display(v)
println()
end
end
function model1()
Random.seed!(42)
model = Model(
optimizer_with_attributes(
Gurobi.Optimizer,
"NonConvex" => 2,
),
)
# Data
# -------------------------------------------------------------------------
n_plants = 5
n_components = 2
plants = 1:n_plants
components = 1:n_components
initial_amount = [rand(1:1000) for _ in plants, _ in components]
revenue = [rand(1:1000) for _ in plants]
tr_cost = [
rand(1:50)
for _ in plants, _ in plants
]
@show plants
@show components
@show initial_amount
@show revenue
# Decision variables
# -------------------------------------------------------------------------
@variable(model, y_total[plants, plants], lower_bound = 0)
@variable(model, y[plants, plants, components], lower_bound = 0)
@variable(model, z_disp_total[plants], lower_bound = 0)
@variable(model, z_disp[plants, components], lower_bound = 0)
@variable(model, z_avail_total[plants])
@variable(model, z_avail[plants, components])
@variable(model, alpha[plants, components])
# Objective
# -------------------------------------------------------------------------
@objective(
model,
Max,
sum(
z_disp_total[p] * revenue[p]
for p in plants
)
-
sum(
y_total[p, q] * tr_cost[p, q]
for p in plants, q in plants
)
)
# Constraints
# -------------------------------------------------------------------------
# Definition of total sent
@constraint(
model,
eq_y_total_def[p in plants, q in plants],
y_total[p, q] == sum(y[p, q, c] for c in components)
)
# Definition of total disposed
@constraint(
model,
eq_z_disp_total_def[p in plants], z_disp_total[p] == sum(z_disp[p, c] for c in components)
)
# Definition of available amount
@constraint(
model,
eq_z_avail_total[p in plants],
z_avail_total[p] == sum(z_avail[p, c] for c in components)
)
# Definition of available component
@constraint(
model,
eq_z_avail[p in plants, c in components],
z_avail[p, c] == initial_amount[p, c] + sum(y[q, p, c] for q in plants)
)
# Mass balance
@constraint(
model,
eq_balance[p in plants],
z_avail_total[p] == z_disp_total[p] + sum(y_total[p, q] for q in plants)
)
# Available proportion
@constraint(
model,
eq_alpha_avail[p in plants, c in components],
z_avail[p, c] == alpha[p, c] * z_avail_total[p]
)
# Sending proportion
@constraint(
model,
eq_alpha_send[p in plants, q in plants, c in components],
y[p, q, c] == alpha[p, c] * y_total[p, q]
)
# Disposal proportion
@constraint(
model,
eq_alpha_disp[p in plants, c in components],
z_disp[p, c] == alpha[p, c] * z_disp_total[p]
)
# Run
# -------------------------------------------------------------------------
print(model)
optimize!(model)
# Print solution
# -------------------------------------------------------------------------
@pprint initial_amount
@pprint revenue
@pprint tr_cost
@pprint_jump y_total
@pprint_jump y
@pprint_jump z_disp_total
@pprint_jump z_disp
@pprint_jump z_avail_total
@pprint_jump z_avail
@pprint_jump alpha
end
model1()

@ -0,0 +1,282 @@
using JuMP
using OrderedCollections
using Gurobi
using Random
using Printf
using DataFrames
using CSV
dict = OrderedDict
function model2()
Random.seed!(42)
model = Model(
optimizer_with_attributes(
Gurobi.Optimizer,
),
)
# Data
# -------------------------------------------------------------------------
components = ["film", "paper", "cardboard"]
centers = [
"Chicago",
"New York City",
"Los Angeles",
"Houston",
"Phoenix",
"Philadelphia",
"San Antonio",
"San Diego",
"Dallas",
"San Jose",
]
plants = [
"Chicago",
"Phoenix",
"Dallas",
]
products = [
"film bale",
"cardboard bale"
]
initial_amount = dict(
(q, c) => rand(1:1000)
for q in centers, c in components
)
cost_tr = dict(
(q, p) => rand(1:10)
for q in centers, p in plants
)
cost_open = dict(
p => rand(5000:10000)
for p in plants
)
cost_var = dict(
p => rand(5:10)
for p in plants
)
revenue = dict(
(p, m) => rand(10:20)
for p in plants, m in products
)
alpha = dict(
"film bale" => dict(
"film" => dict(
"film" => 0.98,
"paper" => 0,
"cardboard" => 0,
),
"paper" => dict(
"film" => 0,
"paper" => 0.02,
"cardboard" => 0,
),
"cardboard" => dict(
"film" => 0,
"paper" => 0,
"cardboard" => 0.02,
),
),
"cardboard bale" => dict(
"film" => dict(
"film" => 0.0,
"paper" => 0.0,
"cardboard" => 0.0,
),
"paper" => dict(
"film" => 0.0,
"paper" => 0.02,
"cardboard" => 0.0,
),
"cardboard" => dict(
"film" => 0.0,
"paper" => 0.0,
"cardboard" => 0.75,
),
),
)
capacity = dict(
p => rand(10000:50000)
for p in plants
)
# Variables
# -------------------------------------------------------------------------
@variable(model, y[centers, plants, components] >= 0)
@variable(model, y_total[centers, plants])
@variable(model, x[plants], Bin)
@variable(model, z_avail[plants, components])
@variable(model, z_prod[plants, products, components])
# Objective
# -------------------------------------------------------------------------
@objective(
model,
Min,
# Transportation cost
+ sum(
cost_tr[q, p] * y[q, p, c]
for p in plants, q in centers, c in components
)
# Opening cost
+ sum(
cost_open[p] * x[p]
for p in plants
)
# Variable operating cost
+ sum(
cost_var[p] * y[q,p,c]
for q in centers, p in plants, c in components
)
# Revenue
+ sum(
revenue[p,m] * z_prod[p,m,c]
for p in plants, m in products, c in components
)
)
# Constraints
# -------------------------------------------------------------------------
# Flow balance at centers:
@constraint(
model,
eq_flow_balance[q in centers, c in components],
sum(y[q,p,c] for p in plants) == initial_amount[q, c]
)
# Total flow:
@constraint(
model,
eq_total_flow[q in centers, p in plants],
y_total[q,p] == sum(y[q,p,c] for c in components)
)
# Center balance mix:
@constraint(
model,
eq_mix[q in centers, p in plants, c in components],
y[q,p,c] == initial_amount[q,c] / sum(initial_amount[q,d] for d in components) * y_total[q,p]
)
# Plant capacity
@constraint(
model,
eq_capacity[p in plants],
sum(y_total[q,p] for q in centers) <= capacity[p] * x[p]
)
# Amount available
@constraint(
model,
eq_z_avail[p in plants, c in components],
z_avail[p,c] == sum(y[q,p,c] for q in centers)
)
# Amount produced
@constraint(
model,
eq_z_prod[p in plants, m in products, c in components],
z_prod[p,m,c] ==
sum(
alpha[m][c][d] *
z_avail[p,c]
for d in components
)
)
# Run
# -------------------------------------------------------------------------
print(model)
optimize!(model)
# Report: Transportation
# -------------------------------------------------------------------------
df = DataFrame()
df."center" = String[]
df."plant" = String[]
df."component" = String[]
df."amount sent (tonne)" = Float64[]
df."transportation cost (\$)" = Float64[]
df."variable operating cost (\$)" = Float64[]
for q in centers, p in plants, c in components
if value(y[q, p, c]) 0
continue
end
push!(
df,
[
q,
p,
c,
value(y[q, p, c]),
cost_tr[q, p] * value(y[q, p, c]),
cost_var[p] * value(y[q,p,c])
]
)
end
CSV.write("output-2/tr.csv", df)
# Report: Plant
# -------------------------------------------------------------------------
df = DataFrame()
df."plant" = String[]
df."is open?" = Float64[]
df."capacity (tonne)" = Float64[]
df."utilization (tonne)" = Float64[]
df."opening cost (\$)" = Float64[]
for p in plants
if value(x[p]) 0
continue
end
push!(
df,
[
p,
value(x[p]),
capacity[p],
sum(value(y_total[q,p]) for q in centers),
cost_open[p] * value(x[p])
]
)
end
CSV.write("output-2/plant.csv", df)
# Report: Plant Outputs
# -------------------------------------------------------------------------
df = DataFrame()
df."plant" = String[]
df."product" = String[]
df."component" = String[]
df."amount produced (tonne)" = Float64[]
df."revenue (\$)" = Float64[]
for p in plants, m in products, c in components
if value(z_prod[p, m, c]) 0
continue
end
push!(
df,
[
p,
m,
c,
value(z_prod[p, m, c]),
revenue[p,m] * value(z_prod[p,m,c])
]
)
end
CSV.write("output-2/plant-outputs.csv", df)
end
model2()

File diff suppressed because it is too large Load Diff

@ -0,0 +1,11 @@
plant,product,component,amount produced (tonne),revenue ($)
Phoenix,film bale,film,2896.88,28968.800000000003
Phoenix,film bale,paper,40.800000000000004,408.00000000000006
Phoenix,film bale,cardboard,53.88,538.8000000000001
Phoenix,cardboard bale,paper,40.800000000000004,530.4000000000001
Phoenix,cardboard bale,cardboard,2020.5,26266.5
Dallas,film bale,film,2144.24,25730.879999999997
Dallas,film bale,paper,37.08,444.96
Dallas,film bale,cardboard,31.86,382.32
Dallas,cardboard bale,paper,37.08,667.4399999999999
Dallas,cardboard bale,cardboard,1194.75,21505.5
1 plant product component amount produced (tonne) revenue ($)
2 Phoenix film bale film 2896.88 28968.800000000003
3 Phoenix film bale paper 40.800000000000004 408.00000000000006
4 Phoenix film bale cardboard 53.88 538.8000000000001
5 Phoenix cardboard bale paper 40.800000000000004 530.4000000000001
6 Phoenix cardboard bale cardboard 2020.5 26266.5
7 Dallas film bale film 2144.24 25730.879999999997
8 Dallas film bale paper 37.08 444.96
9 Dallas film bale cardboard 31.86 382.32
10 Dallas cardboard bale paper 37.08 667.4399999999999
11 Dallas cardboard bale cardboard 1194.75 21505.5

@ -0,0 +1,3 @@
plant,is open?,capacity (tonne),utilization (tonne),opening cost ($)
Phoenix,1.0,41670.0,7690.0,6405.0
Dallas,1.0,12957.0,5635.0,6824.0
1 plant is open? capacity (tonne) utilization (tonne) opening cost ($)
2 Phoenix 1.0 41670.0 7690.0 6405.0
3 Dallas 1.0 12957.0 5635.0 6824.0

@ -0,0 +1,31 @@
center,plant,component,amount sent (tonne),transportation cost ($),variable operating cost ($)
Chicago,Dallas,film,630.0,1890.0,5670.0
Chicago,Dallas,paper,662.0000000000001,1986.0000000000005,5958.000000000001
Chicago,Dallas,cardboard,81.0,243.0,729.0
New York City,Phoenix,film,451.00000000000006,2255.0000000000005,4059.0000000000005
New York City,Phoenix,paper,640.0000000000001,3200.0000000000005,5760.000000000001
New York City,Phoenix,cardboard,516.0000000000001,2580.0000000000005,4644.000000000001
Los Angeles,Dallas,film,478.0,2868.0,4302.0
Los Angeles,Dallas,paper,342.99999999999994,2057.9999999999995,3086.9999999999995
Los Angeles,Dallas,cardboard,197.0,1182.0,1773.0
Houston,Phoenix,film,703.9999999999998,1407.9999999999995,6335.999999999998
Houston,Phoenix,paper,268.0,536.0,2412.0
Houston,Phoenix,cardboard,600.9999999999999,1201.9999999999998,5408.999999999999
Phoenix,Phoenix,film,674.0,2022.0,6066.0
Phoenix,Phoenix,paper,515.9999999999999,1547.9999999999995,4643.999999999999
Phoenix,Phoenix,cardboard,398.0,1194.0,3582.0
Philadelphia,Dallas,film,165.99999999999997,331.99999999999994,1493.9999999999998
Philadelphia,Dallas,paper,91.0,182.0,819.0
Philadelphia,Dallas,cardboard,315.99999999999994,631.9999999999999,2843.9999999999995
San Antonio,Dallas,film,614.0000000000001,614.0000000000001,5526.000000000001
San Antonio,Dallas,paper,273.0,273.0,2457.0
San Antonio,Dallas,cardboard,435.00000000000006,435.00000000000006,3915.0000000000005
San Diego,Phoenix,film,669.0000000000001,5352.000000000001,6021.000000000001
San Diego,Phoenix,paper,192.0,1536.0,1728.0
San Diego,Phoenix,cardboard,859.0000000000001,6872.000000000001,7731.000000000001
Dallas,Phoenix,film,458.00000000000006,3664.0000000000005,4122.000000000001
Dallas,Phoenix,paper,424.0000000000001,3392.000000000001,3816.000000000001
Dallas,Phoenix,cardboard,320.0,2560.0,2880.0
San Jose,Dallas,film,300.0,900.0,2700.0
San Jose,Dallas,paper,484.99999999999994,1454.9999999999998,4364.999999999999
San Jose,Dallas,cardboard,563.9999999999999,1691.9999999999995,5075.999999999999
1 center plant component amount sent (tonne) transportation cost ($) variable operating cost ($)
2 Chicago Dallas film 630.0 1890.0 5670.0
3 Chicago Dallas paper 662.0000000000001 1986.0000000000005 5958.000000000001
4 Chicago Dallas cardboard 81.0 243.0 729.0
5 New York City Phoenix film 451.00000000000006 2255.0000000000005 4059.0000000000005
6 New York City Phoenix paper 640.0000000000001 3200.0000000000005 5760.000000000001
7 New York City Phoenix cardboard 516.0000000000001 2580.0000000000005 4644.000000000001
8 Los Angeles Dallas film 478.0 2868.0 4302.0
9 Los Angeles Dallas paper 342.99999999999994 2057.9999999999995 3086.9999999999995
10 Los Angeles Dallas cardboard 197.0 1182.0 1773.0
11 Houston Phoenix film 703.9999999999998 1407.9999999999995 6335.999999999998
12 Houston Phoenix paper 268.0 536.0 2412.0
13 Houston Phoenix cardboard 600.9999999999999 1201.9999999999998 5408.999999999999
14 Phoenix Phoenix film 674.0 2022.0 6066.0
15 Phoenix Phoenix paper 515.9999999999999 1547.9999999999995 4643.999999999999
16 Phoenix Phoenix cardboard 398.0 1194.0 3582.0
17 Philadelphia Dallas film 165.99999999999997 331.99999999999994 1493.9999999999998
18 Philadelphia Dallas paper 91.0 182.0 819.0
19 Philadelphia Dallas cardboard 315.99999999999994 631.9999999999999 2843.9999999999995
20 San Antonio Dallas film 614.0000000000001 614.0000000000001 5526.000000000001
21 San Antonio Dallas paper 273.0 273.0 2457.0
22 San Antonio Dallas cardboard 435.00000000000006 435.00000000000006 3915.0000000000005
23 San Diego Phoenix film 669.0000000000001 5352.000000000001 6021.000000000001
24 San Diego Phoenix paper 192.0 1536.0 1728.0
25 San Diego Phoenix cardboard 859.0000000000001 6872.000000000001 7731.000000000001
26 Dallas Phoenix film 458.00000000000006 3664.0000000000005 4122.000000000001
27 Dallas Phoenix paper 424.0000000000001 3392.000000000001 3816.000000000001
28 Dallas Phoenix cardboard 320.0 2560.0 2880.0
29 San Jose Dallas film 300.0 900.0 2700.0
30 San Jose Dallas paper 484.99999999999994 1454.9999999999998 4364.999999999999
31 San Jose Dallas cardboard 563.9999999999999 1691.9999999999995 5075.999999999999

@ -0,0 +1,815 @@
{
"parameters": {
"time horizon (years)": 2
},
"products": {
"Waste": {
"components": [
"Film",
"Paper",
"Cardboard"
],
"disposal limit (tonne)": [
0.0,
0.0
],
"transportation cost ($/km/tonne)": [
0.05,
0.05
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"Film bale": {
"components": [
"Film",
"Paper",
"Cardboard"
],
"disposal limit (tonne)": [
0.0,
0.0
],
"transportation cost ($/km/tonne)": [
0.05,
0.05
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"Cardboard bale": {
"components": [
"Paper",
"Cardboard"
],
"disposal limit (tonne)": [
0.0,
0.0
],
"transportation cost ($/km/tonne)": [
0.05,
0.05
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"Cardboard sheets": {
"components": [
"Cardboard"
],
"disposal limit (tonne)": [
0.0,
0.0
],
"transportation cost ($/km/tonne)": [
0.05,
0.05
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.01,
0.01
]
}
}
},
"centers": {
"Collection (Chicago)": {
"latitude": 41.881832,
"longitude": -87.623177,
"output": {
"Waste": {
"initial amount (tonne)": [
[
716.0,
2864.0,
1074.0
],
[
1394.0,
5576.0,
2091.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (New York City)": {
"latitude": 40.712776,
"longitude": -74.005974,
"output": {
"Waste": {
"initial amount (tonne)": [
[
990.0,
891.0,
297.0
],
[
6450.0,
5805.0,
1935.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (Los Angeles)": {
"latitude": 34.052235,
"longitude": -118.243683,
"output": {
"Waste": {
"initial amount (tonne)": [
[
4160.0,
3640.0,
5200.0
],
[
5704.0,
4991.0,
7130.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (Houston)": {
"latitude": 29.760427,
"longitude": -95.369804,
"output": {
"Waste": {
"initial amount (tonne)": [
[
2668.0,
4669.0,
6670.0
],
[
1852.0,
3241.0,
4630.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (Phoenix)": {
"latitude": 33.448376,
"longitude": -112.074036,
"output": {
"Waste": {
"initial amount (tonne)": [
[
3635.0,
6543.0,
5089.0
],
[
2275.0,
4095.0,
3185.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (Philadelphia)": {
"latitude": 39.952583,
"longitude": -75.165222,
"output": {
"Waste": {
"initial amount (tonne)": [
[
220.0,
880.0,
880.0
],
[
962.0,
3848.0,
3848.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (San Antonio)": {
"latitude": 29.424122,
"longitude": -98.493629,
"output": {
"Waste": {
"initial amount (tonne)": [
[
288.0,
252.0,
324.0
],
[
4240.0,
3710.0,
4770.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (San Diego)": {
"latitude": 32.715736,
"longitude": -117.161087,
"output": {
"Waste": {
"initial amount (tonne)": [
[
6690.0,
1338.0,
4014.0
],
[
8460.0,
1692.0,
5076.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (Dallas)": {
"latitude": 32.776664,
"longitude": -96.796988,
"output": {
"Waste": {
"initial amount (tonne)": [
[
5096.0,
728.0,
5824.0
],
[
4354.0,
622.0,
4976.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
},
"Collection (San Jose)": {
"latitude": 37.338208,
"longitude": -121.886329,
"output": {
"Waste": {
"initial amount (tonne)": [
[
1255.0,
2510.0,
251.0
],
[
4650.0,
9300.0,
930.0
]
],
"disposal cost ($/tonne)": [
0.0,
0.0
],
"storage cost ($/tonne)": [
1.0,
1.0
],
"storage limit (tonne)": [
1000.0,
1000.0
],
"acquisition cost ($/tonne)": [
1.0,
1.0
]
}
}
}
},
"plants": {
"MRF (Chicago)": {
"latitude": 41.881832,
"longitude": -87.623177,
"input": "Waste",
"output": {
"Film bale": {
"output matrix": [
[
0.98,
0.0,
0.0
],
[
0.0,
0.02,
0.0
],
[
0.0,
0.0,
0.02
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-10.0,
-10.0
]
},
"Cardboard bale": {
"output matrix": [
[
0.0,
0.02,
0.0
],
[
0.0,
0.0,
0.75
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-10.0,
-10.0
]
}
},
"fixed operating cost ($)": [
1000.0,
1000.0
],
"variable operating cost ($/tonne)": [
1.0,
1.0
],
"opening cost ($)": [
10000.0,
10000.0
],
"capacity (tonne)": 50000.0,
"emissions (tonne/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"MRF (Phoenix)": {
"latitude": 33.448376,
"longitude": -112.074036,
"input": "Waste",
"output": {
"Film bale": {
"output matrix": [
[
0.98,
0.0,
0.0
],
[
0.0,
0.02,
0.0
],
[
0.0,
0.0,
0.02
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-10.0,
-10.0
]
},
"Cardboard bale": {
"output matrix": [
[
0.0,
0.02,
0.0
],
[
0.0,
0.0,
0.75
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-10.0,
-10.0
]
}
},
"fixed operating cost ($)": [
1000.0,
1000.0
],
"variable operating cost ($/tonne)": [
1.0,
1.0
],
"opening cost ($)": [
10000.0,
10000.0
],
"capacity (tonne)": 50000.0,
"emissions (tonne/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"MRF (Dallas)": {
"latitude": 32.776664,
"longitude": -96.796988,
"input": "Waste",
"output": {
"Film bale": {
"output matrix": [
[
0.98,
0.0,
0.0
],
[
0.0,
0.02,
0.0
],
[
0.0,
0.0,
0.02
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-10.0,
-10.0
]
},
"Cardboard bale": {
"output matrix": [
[
0.0,
0.02,
0.0
],
[
0.0,
0.0,
0.75
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-10.0,
-10.0
]
}
},
"fixed operating cost ($)": [
1000.0,
1000.0
],
"variable operating cost ($/tonne)": [
1.0,
1.0
],
"opening cost ($)": [
10000.0,
10000.0
],
"capacity (tonne)": 50000.0,
"emissions (tonne/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"Paper Mill (Chicago)": {
"latitude": 41.881832,
"longitude": -87.623177,
"input": "Cardboard bale",
"output": {
"Cardboard sheets": {
"output matrix": [
[
0.0,
0.95
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-100.0,
-100.0
]
}
},
"fixed operating cost ($)": [
1000.0,
1000.0
],
"variable operating cost ($/tonne)": [
1.0,
1.0
],
"opening cost ($)": [
10000.0,
10000.0
],
"capacity (tonne)": 50000.0,
"emissions (tonne/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"Paper Mill (Phoenix)": {
"latitude": 33.448376,
"longitude": -112.074036,
"input": "Cardboard bale",
"output": {
"Cardboard sheets": {
"output matrix": [
[
0.0,
0.95
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-100.0,
-100.0
]
}
},
"fixed operating cost ($)": [
1000.0,
1000.0
],
"variable operating cost ($/tonne)": [
1.0,
1.0
],
"opening cost ($)": [
10000.0,
10000.0
],
"capacity (tonne)": 50000.0,
"emissions (tonne/tonne)": {
"CO2": [
0.01,
0.01
]
}
},
"Paper Mill (Dallas)": {
"latitude": 32.776664,
"longitude": -96.796988,
"input": "Cardboard bale",
"output": {
"Cardboard sheets": {
"output matrix": [
[
0.0,
0.95
]
],
"disposal limit (tonne)": [
1.0e6,
1.0e6
],
"disposal cost ($/tonne)": [
-100.0,
-100.0
]
}
},
"fixed operating cost ($)": [
1000.0,
1000.0
],
"variable operating cost ($/tonne)": [
1.0,
1.0
],
"opening cost ($)": [
10000.0,
10000.0
],
"capacity (tonne)": 50000.0,
"emissions (tonne/tonne)": {
"CO2": [
0.01,
0.01
]
}
}
},
"emissions": {
"CO2": {
"penalty ($/tonne)": [
0.01,
0.01
],
"limit (tonne)": [
1.0e6,
1.0e6
]
}
}
}

@ -0,0 +1,61 @@
center,product,component,time,amount available (tonne),amount sent (tonne),amount stored (tonne),amount disposed (tonne),acquisition cost ($),storage cost ($),disposal cost ($)
Collection (San Antonio),Waste,Film,1,288.0,288.0,0.0,0.0,288.0,0.0,0.0
Collection (San Antonio),Waste,Film,2,4240.0,4240.0,0.0,0.0,4240.0,0.0,0.0
Collection (San Antonio),Waste,Paper,1,252.0,252.00000000000003,0.0,0.0,252.0,0.0,0.0
Collection (San Antonio),Waste,Paper,2,3710.0,3710.0000000000005,0.0,0.0,3710.0,0.0,0.0
Collection (San Antonio),Waste,Cardboard,1,324.0,324.0,0.0,0.0,324.0,0.0,0.0
Collection (San Antonio),Waste,Cardboard,2,4770.0,4770.0,0.0,0.0,4770.0,0.0,0.0
Collection (San Jose),Waste,Film,1,1255.0,1255.0,0.0,0.0,1255.0,0.0,0.0
Collection (San Jose),Waste,Film,2,4650.0,4650.0,0.0,0.0,4650.0,0.0,0.0
Collection (San Jose),Waste,Paper,1,2510.0,2510.0,0.0,0.0,2510.0,0.0,0.0
Collection (San Jose),Waste,Paper,2,9300.0,9300.0,0.0,0.0,9300.0,0.0,0.0
Collection (San Jose),Waste,Cardboard,1,251.0,251.0,0.0,0.0,251.0,0.0,0.0
Collection (San Jose),Waste,Cardboard,2,930.0,930.0,0.0,0.0,930.0,0.0,0.0
Collection (New York City),Waste,Film,1,990.0,990.0,0.0,0.0,990.0,0.0,0.0
Collection (New York City),Waste,Film,2,6450.0,6450.0,0.0,0.0,6450.0,0.0,0.0
Collection (New York City),Waste,Paper,1,891.0,891.0,0.0,0.0,891.0,0.0,0.0
Collection (New York City),Waste,Paper,2,5805.0,5805.0,0.0,0.0,5805.0,0.0,0.0
Collection (New York City),Waste,Cardboard,1,297.0,297.0,0.0,0.0,297.0,0.0,0.0
Collection (New York City),Waste,Cardboard,2,1935.0,1934.9999999999998,0.0,0.0,1935.0,0.0,0.0
Collection (Los Angeles),Waste,Film,1,4160.0,4160.0,0.0,0.0,4160.0,0.0,0.0
Collection (Los Angeles),Waste,Film,2,5704.0,5704.0,0.0,0.0,5704.0,0.0,0.0
Collection (Los Angeles),Waste,Paper,1,3640.0,3640.0000000000005,0.0,0.0,3640.0,0.0,0.0
Collection (Los Angeles),Waste,Paper,2,4991.0,4991.000000000001,0.0,0.0,4991.0,0.0,0.0
Collection (Los Angeles),Waste,Cardboard,1,5200.0,5200.0,0.0,0.0,5200.0,0.0,0.0
Collection (Los Angeles),Waste,Cardboard,2,7130.0,7130.0,0.0,0.0,7130.0,0.0,0.0
Collection (Chicago),Waste,Film,1,716.0,716.0,0.0,0.0,716.0,0.0,0.0
Collection (Chicago),Waste,Film,2,1394.0,1394.0,0.0,0.0,1394.0,0.0,0.0
Collection (Chicago),Waste,Paper,1,2864.0,2864.0,0.0,0.0,2864.0,0.0,0.0
Collection (Chicago),Waste,Paper,2,5576.0,5576.0,0.0,0.0,5576.0,0.0,0.0
Collection (Chicago),Waste,Cardboard,1,1074.0,1074.0,0.0,0.0,1074.0,0.0,0.0
Collection (Chicago),Waste,Cardboard,2,2091.0,2091.0,0.0,0.0,2091.0,0.0,0.0
Collection (Dallas),Waste,Film,1,5096.0,5096.0,0.0,0.0,5096.0,0.0,0.0
Collection (Dallas),Waste,Film,2,4354.0,4354.0,0.0,0.0,4354.0,0.0,0.0
Collection (Dallas),Waste,Paper,1,728.0,728.0,0.0,0.0,728.0,0.0,0.0
Collection (Dallas),Waste,Paper,2,622.0,622.0,0.0,0.0,622.0,0.0,0.0
Collection (Dallas),Waste,Cardboard,1,5824.0,5824.0,0.0,0.0,5824.0,0.0,0.0
Collection (Dallas),Waste,Cardboard,2,4976.0,4976.0,0.0,0.0,4976.0,0.0,0.0
Collection (Phoenix),Waste,Film,1,3635.0,3635.0,0.0,0.0,3635.0,0.0,0.0
Collection (Phoenix),Waste,Film,2,2275.0,2275.0,0.0,0.0,2275.0,0.0,0.0
Collection (Phoenix),Waste,Paper,1,6543.0,6543.0,0.0,0.0,6543.0,0.0,0.0
Collection (Phoenix),Waste,Paper,2,4095.0,4095.0,0.0,0.0,4095.0,0.0,0.0
Collection (Phoenix),Waste,Cardboard,1,5089.0,5089.0,0.0,0.0,5089.0,0.0,0.0
Collection (Phoenix),Waste,Cardboard,2,3185.0,3185.0,0.0,0.0,3185.0,0.0,0.0
Collection (San Diego),Waste,Film,1,6690.0,6690.0,0.0,0.0,6690.0,0.0,0.0
Collection (San Diego),Waste,Film,2,8460.0,8460.0,0.0,0.0,8460.0,0.0,0.0
Collection (San Diego),Waste,Paper,1,1338.0,1338.0,0.0,0.0,1338.0,0.0,0.0
Collection (San Diego),Waste,Paper,2,1692.0,1692.0,0.0,0.0,1692.0,0.0,0.0
Collection (San Diego),Waste,Cardboard,1,4014.0,4014.0,0.0,0.0,4014.0,0.0,0.0
Collection (San Diego),Waste,Cardboard,2,5076.0,5076.0,0.0,0.0,5076.0,0.0,0.0
Collection (Philadelphia),Waste,Film,1,220.0,220.0,0.0,0.0,220.0,0.0,0.0
Collection (Philadelphia),Waste,Film,2,962.0,962.0,0.0,0.0,962.0,0.0,0.0
Collection (Philadelphia),Waste,Paper,1,880.0,880.0,0.0,0.0,880.0,0.0,0.0
Collection (Philadelphia),Waste,Paper,2,3848.0,3848.0,0.0,0.0,3848.0,0.0,0.0
Collection (Philadelphia),Waste,Cardboard,1,880.0,880.0,0.0,0.0,880.0,0.0,0.0
Collection (Philadelphia),Waste,Cardboard,2,3848.0,3848.0,0.0,0.0,3848.0,0.0,0.0
Collection (Houston),Waste,Film,1,2668.0,2668.0,0.0,0.0,2668.0,0.0,0.0
Collection (Houston),Waste,Film,2,1852.0,1852.0,0.0,0.0,1852.0,0.0,0.0
Collection (Houston),Waste,Paper,1,4669.0,4669.0,0.0,0.0,4669.0,0.0,0.0
Collection (Houston),Waste,Paper,2,3241.0,3241.0,0.0,0.0,3241.0,0.0,0.0
Collection (Houston),Waste,Cardboard,1,6670.0,6670.0,0.0,0.0,6670.0,0.0,0.0
Collection (Houston),Waste,Cardboard,2,4630.0,4630.0,0.0,0.0,4630.0,0.0,0.0
1 center product component time amount available (tonne) amount sent (tonne) amount stored (tonne) amount disposed (tonne) acquisition cost ($) storage cost ($) disposal cost ($)
2 Collection (San Antonio) Waste Film 1 288.0 288.0 0.0 0.0 288.0 0.0 0.0
3 Collection (San Antonio) Waste Film 2 4240.0 4240.0 0.0 0.0 4240.0 0.0 0.0
4 Collection (San Antonio) Waste Paper 1 252.0 252.00000000000003 0.0 0.0 252.0 0.0 0.0
5 Collection (San Antonio) Waste Paper 2 3710.0 3710.0000000000005 0.0 0.0 3710.0 0.0 0.0
6 Collection (San Antonio) Waste Cardboard 1 324.0 324.0 0.0 0.0 324.0 0.0 0.0
7 Collection (San Antonio) Waste Cardboard 2 4770.0 4770.0 0.0 0.0 4770.0 0.0 0.0
8 Collection (San Jose) Waste Film 1 1255.0 1255.0 0.0 0.0 1255.0 0.0 0.0
9 Collection (San Jose) Waste Film 2 4650.0 4650.0 0.0 0.0 4650.0 0.0 0.0
10 Collection (San Jose) Waste Paper 1 2510.0 2510.0 0.0 0.0 2510.0 0.0 0.0
11 Collection (San Jose) Waste Paper 2 9300.0 9300.0 0.0 0.0 9300.0 0.0 0.0
12 Collection (San Jose) Waste Cardboard 1 251.0 251.0 0.0 0.0 251.0 0.0 0.0
13 Collection (San Jose) Waste Cardboard 2 930.0 930.0 0.0 0.0 930.0 0.0 0.0
14 Collection (New York City) Waste Film 1 990.0 990.0 0.0 0.0 990.0 0.0 0.0
15 Collection (New York City) Waste Film 2 6450.0 6450.0 0.0 0.0 6450.0 0.0 0.0
16 Collection (New York City) Waste Paper 1 891.0 891.0 0.0 0.0 891.0 0.0 0.0
17 Collection (New York City) Waste Paper 2 5805.0 5805.0 0.0 0.0 5805.0 0.0 0.0
18 Collection (New York City) Waste Cardboard 1 297.0 297.0 0.0 0.0 297.0 0.0 0.0
19 Collection (New York City) Waste Cardboard 2 1935.0 1934.9999999999998 0.0 0.0 1935.0 0.0 0.0
20 Collection (Los Angeles) Waste Film 1 4160.0 4160.0 0.0 0.0 4160.0 0.0 0.0
21 Collection (Los Angeles) Waste Film 2 5704.0 5704.0 0.0 0.0 5704.0 0.0 0.0
22 Collection (Los Angeles) Waste Paper 1 3640.0 3640.0000000000005 0.0 0.0 3640.0 0.0 0.0
23 Collection (Los Angeles) Waste Paper 2 4991.0 4991.000000000001 0.0 0.0 4991.0 0.0 0.0
24 Collection (Los Angeles) Waste Cardboard 1 5200.0 5200.0 0.0 0.0 5200.0 0.0 0.0
25 Collection (Los Angeles) Waste Cardboard 2 7130.0 7130.0 0.0 0.0 7130.0 0.0 0.0
26 Collection (Chicago) Waste Film 1 716.0 716.0 0.0 0.0 716.0 0.0 0.0
27 Collection (Chicago) Waste Film 2 1394.0 1394.0 0.0 0.0 1394.0 0.0 0.0
28 Collection (Chicago) Waste Paper 1 2864.0 2864.0 0.0 0.0 2864.0 0.0 0.0
29 Collection (Chicago) Waste Paper 2 5576.0 5576.0 0.0 0.0 5576.0 0.0 0.0
30 Collection (Chicago) Waste Cardboard 1 1074.0 1074.0 0.0 0.0 1074.0 0.0 0.0
31 Collection (Chicago) Waste Cardboard 2 2091.0 2091.0 0.0 0.0 2091.0 0.0 0.0
32 Collection (Dallas) Waste Film 1 5096.0 5096.0 0.0 0.0 5096.0 0.0 0.0
33 Collection (Dallas) Waste Film 2 4354.0 4354.0 0.0 0.0 4354.0 0.0 0.0
34 Collection (Dallas) Waste Paper 1 728.0 728.0 0.0 0.0 728.0 0.0 0.0
35 Collection (Dallas) Waste Paper 2 622.0 622.0 0.0 0.0 622.0 0.0 0.0
36 Collection (Dallas) Waste Cardboard 1 5824.0 5824.0 0.0 0.0 5824.0 0.0 0.0
37 Collection (Dallas) Waste Cardboard 2 4976.0 4976.0 0.0 0.0 4976.0 0.0 0.0
38 Collection (Phoenix) Waste Film 1 3635.0 3635.0 0.0 0.0 3635.0 0.0 0.0
39 Collection (Phoenix) Waste Film 2 2275.0 2275.0 0.0 0.0 2275.0 0.0 0.0
40 Collection (Phoenix) Waste Paper 1 6543.0 6543.0 0.0 0.0 6543.0 0.0 0.0
41 Collection (Phoenix) Waste Paper 2 4095.0 4095.0 0.0 0.0 4095.0 0.0 0.0
42 Collection (Phoenix) Waste Cardboard 1 5089.0 5089.0 0.0 0.0 5089.0 0.0 0.0
43 Collection (Phoenix) Waste Cardboard 2 3185.0 3185.0 0.0 0.0 3185.0 0.0 0.0
44 Collection (San Diego) Waste Film 1 6690.0 6690.0 0.0 0.0 6690.0 0.0 0.0
45 Collection (San Diego) Waste Film 2 8460.0 8460.0 0.0 0.0 8460.0 0.0 0.0
46 Collection (San Diego) Waste Paper 1 1338.0 1338.0 0.0 0.0 1338.0 0.0 0.0
47 Collection (San Diego) Waste Paper 2 1692.0 1692.0 0.0 0.0 1692.0 0.0 0.0
48 Collection (San Diego) Waste Cardboard 1 4014.0 4014.0 0.0 0.0 4014.0 0.0 0.0
49 Collection (San Diego) Waste Cardboard 2 5076.0 5076.0 0.0 0.0 5076.0 0.0 0.0
50 Collection (Philadelphia) Waste Film 1 220.0 220.0 0.0 0.0 220.0 0.0 0.0
51 Collection (Philadelphia) Waste Film 2 962.0 962.0 0.0 0.0 962.0 0.0 0.0
52 Collection (Philadelphia) Waste Paper 1 880.0 880.0 0.0 0.0 880.0 0.0 0.0
53 Collection (Philadelphia) Waste Paper 2 3848.0 3848.0 0.0 0.0 3848.0 0.0 0.0
54 Collection (Philadelphia) Waste Cardboard 1 880.0 880.0 0.0 0.0 880.0 0.0 0.0
55 Collection (Philadelphia) Waste Cardboard 2 3848.0 3848.0 0.0 0.0 3848.0 0.0 0.0
56 Collection (Houston) Waste Film 1 2668.0 2668.0 0.0 0.0 2668.0 0.0 0.0
57 Collection (Houston) Waste Film 2 1852.0 1852.0 0.0 0.0 1852.0 0.0 0.0
58 Collection (Houston) Waste Paper 1 4669.0 4669.0 0.0 0.0 4669.0 0.0 0.0
59 Collection (Houston) Waste Paper 2 3241.0 3241.0 0.0 0.0 3241.0 0.0 0.0
60 Collection (Houston) Waste Cardboard 1 6670.0 6670.0 0.0 0.0 6670.0 0.0 0.0
61 Collection (Houston) Waste Cardboard 2 4630.0 4630.0 0.0 0.0 4630.0 0.0 0.0

@ -0,0 +1,13 @@
plant,emission,time,amount emitted (tonne),emission cost ($)
MRF (Chicago),CO2,1,88.11999999999999,0.8811999999999999
MRF (Chicago),CO2,2,319.09,3.1908999999999996
Paper Mill (Phoenix),CO2,1,111.96120000000002,1.1196120000000003
Paper Mill (Phoenix),CO2,2,121.9771,1.219771
Paper Mill (Dallas),CO2,1,97.26479999999998,0.9726479999999998
Paper Mill (Dallas),CO2,2,113.78059999999999,1.1378059999999999
MRF (Phoenix),CO2,1,443.25000000000006,4.432500000000001
MRF (Phoenix),CO2,2,500.0,5.0
MRF (Dallas),CO2,1,265.19,2.6519
MRF (Dallas),CO2,2,398.83,3.9882999999999997
Paper Mill (Chicago),CO2,1,17.8095,0.178095
Paper Mill (Chicago),CO2,2,62.10079999999999,0.6210079999999999
1 plant emission time amount emitted (tonne) emission cost ($)
2 MRF (Chicago) CO2 1 88.11999999999999 0.8811999999999999
3 MRF (Chicago) CO2 2 319.09 3.1908999999999996
4 Paper Mill (Phoenix) CO2 1 111.96120000000002 1.1196120000000003
5 Paper Mill (Phoenix) CO2 2 121.9771 1.219771
6 Paper Mill (Dallas) CO2 1 97.26479999999998 0.9726479999999998
7 Paper Mill (Dallas) CO2 2 113.78059999999999 1.1378059999999999
8 MRF (Phoenix) CO2 1 443.25000000000006 4.432500000000001
9 MRF (Phoenix) CO2 2 500.0 5.0
10 MRF (Dallas) CO2 1 265.19 2.6519
11 MRF (Dallas) CO2 2 398.83 3.9882999999999997
12 Paper Mill (Chicago) CO2 1 17.8095 0.178095
13 Paper Mill (Chicago) CO2 2 62.10079999999999 0.6210079999999999

@ -0,0 +1,37 @@
plant,product,component,time,amount produced (tonne),amount disposed (tonne),amount sent (tonne),disposal cost ($)
MRF (Chicago),Film bale,Film,1,1887.4799999999998,1887.4799999999998,0.0,-18874.8
MRF (Chicago),Film bale,Film,2,8629.88,8629.88,0.0,-86298.79999999999
MRF (Chicago),Film bale,Paper,1,92.70000000000002,92.70000000000002,0.0,-927.0000000000002
MRF (Chicago),Film bale,Paper,2,304.58,304.58,0.0,-3045.7999999999997
MRF (Chicago),Film bale,Cardboard,1,45.02,45.02,0.0,-450.20000000000005
MRF (Chicago),Film bale,Cardboard,2,157.48000000000002,157.48000000000002,0.0,-1574.8000000000002
MRF (Chicago),Cardboard bale,Paper,1,92.70000000000002,0.0,92.70000000000002,-0.0
MRF (Chicago),Cardboard bale,Paper,2,304.579999999999,0.0,304.579999999999,-0.0
MRF (Chicago),Cardboard bale,Cardboard,1,1688.25,0.0,1688.25,-0.0
MRF (Chicago),Cardboard bale,Cardboard,2,5905.5,0.0,5905.5,-0.0
Paper Mill (Phoenix),Cardboard sheets,Cardboard,1,10369.725,10369.725,0.0,-1.0369725e6
Paper Mill (Phoenix),Cardboard sheets,Cardboard,2,11295.262499999999,11295.262499999999,0.0,-1.12952625e6
Paper Mill (Dallas),Cardboard sheets,Cardboard,1,9132.824999999999,9132.824999999999,0.0,-913282.4999999999
Paper Mill (Dallas),Cardboard sheets,Cardboard,2,10576.35,10576.35,0.0,-1.057635e6
MRF (Phoenix),Film bale,Film,1,15425.2,15425.2,0.0,-154252.0
MRF (Phoenix),Film bale,Film,2,18374.02,18374.02,0.0,-183740.2
MRF (Phoenix),Film bale,Paper,1,280.62,280.62,0.0,-2806.2
MRF (Phoenix),Film bale,Paper,2,307.96000000000004,307.96000000000004,0.0,-3079.6000000000004
MRF (Phoenix),Film bale,Cardboard,1,291.08,291.08,0.0,-2910.7999999999997
MRF (Phoenix),Film bale,Cardboard,2,317.06,317.06,0.0,-3170.6
MRF (Phoenix),Cardboard bale,Paper,1,280.6200000000026,0.0,280.6200000000026,-0.0
MRF (Phoenix),Cardboard bale,Paper,2,307.96000000000004,0.0,307.96000000000004,-0.0
MRF (Phoenix),Cardboard bale,Cardboard,1,10915.5,0.0,10915.5,-0.0
MRF (Phoenix),Cardboard bale,Cardboard,2,11889.75,0.0,11889.75,-0.0
MRF (Dallas),Film bale,Film,1,7890.959999999999,7890.959999999999,0.0,-78909.59999999999
MRF (Dallas),Film bale,Film,2,12530.279999999999,12530.279999999999,0.0,-125302.79999999999
MRF (Dallas),Film bale,Paper,1,112.97999999999999,112.97999999999999,0.0,-1129.8
MRF (Dallas),Film bale,Paper,2,245.06,245.06,0.0,-2450.6
MRF (Dallas),Film bale,Cardboard,1,256.36,256.36,0.0,-2563.6000000000004
MRF (Dallas),Film bale,Cardboard,2,296.88,296.88,0.0,-2968.8
MRF (Dallas),Cardboard bale,Paper,1,112.97999999999774,0.0,112.97999999999774,-0.0
MRF (Dallas),Cardboard bale,Paper,2,245.06,0.0,245.06,-0.0
MRF (Dallas),Cardboard bale,Cardboard,1,9613.5,0.0,9613.5,-0.0
MRF (Dallas),Cardboard bale,Cardboard,2,11133.0,0.0,11133.0,-0.0
Paper Mill (Chicago),Cardboard sheets,Cardboard,1,1603.8374999999999,1603.8374999999999,0.0,-160383.75
Paper Mill (Chicago),Cardboard sheets,Cardboard,2,5610.224999999999,5610.224999999999,0.0,-561022.5
1 plant product component time amount produced (tonne) amount disposed (tonne) amount sent (tonne) disposal cost ($)
2 MRF (Chicago) Film bale Film 1 1887.4799999999998 1887.4799999999998 0.0 -18874.8
3 MRF (Chicago) Film bale Film 2 8629.88 8629.88 0.0 -86298.79999999999
4 MRF (Chicago) Film bale Paper 1 92.70000000000002 92.70000000000002 0.0 -927.0000000000002
5 MRF (Chicago) Film bale Paper 2 304.58 304.58 0.0 -3045.7999999999997
6 MRF (Chicago) Film bale Cardboard 1 45.02 45.02 0.0 -450.20000000000005
7 MRF (Chicago) Film bale Cardboard 2 157.48000000000002 157.48000000000002 0.0 -1574.8000000000002
8 MRF (Chicago) Cardboard bale Paper 1 92.70000000000002 0.0 92.70000000000002 -0.0
9 MRF (Chicago) Cardboard bale Paper 2 304.579999999999 0.0 304.579999999999 -0.0
10 MRF (Chicago) Cardboard bale Cardboard 1 1688.25 0.0 1688.25 -0.0
11 MRF (Chicago) Cardboard bale Cardboard 2 5905.5 0.0 5905.5 -0.0
12 Paper Mill (Phoenix) Cardboard sheets Cardboard 1 10369.725 10369.725 0.0 -1.0369725e6
13 Paper Mill (Phoenix) Cardboard sheets Cardboard 2 11295.262499999999 11295.262499999999 0.0 -1.12952625e6
14 Paper Mill (Dallas) Cardboard sheets Cardboard 1 9132.824999999999 9132.824999999999 0.0 -913282.4999999999
15 Paper Mill (Dallas) Cardboard sheets Cardboard 2 10576.35 10576.35 0.0 -1.057635e6
16 MRF (Phoenix) Film bale Film 1 15425.2 15425.2 0.0 -154252.0
17 MRF (Phoenix) Film bale Film 2 18374.02 18374.02 0.0 -183740.2
18 MRF (Phoenix) Film bale Paper 1 280.62 280.62 0.0 -2806.2
19 MRF (Phoenix) Film bale Paper 2 307.96000000000004 307.96000000000004 0.0 -3079.6000000000004
20 MRF (Phoenix) Film bale Cardboard 1 291.08 291.08 0.0 -2910.7999999999997
21 MRF (Phoenix) Film bale Cardboard 2 317.06 317.06 0.0 -3170.6
22 MRF (Phoenix) Cardboard bale Paper 1 280.6200000000026 0.0 280.6200000000026 -0.0
23 MRF (Phoenix) Cardboard bale Paper 2 307.96000000000004 0.0 307.96000000000004 -0.0
24 MRF (Phoenix) Cardboard bale Cardboard 1 10915.5 0.0 10915.5 -0.0
25 MRF (Phoenix) Cardboard bale Cardboard 2 11889.75 0.0 11889.75 -0.0
26 MRF (Dallas) Film bale Film 1 7890.959999999999 7890.959999999999 0.0 -78909.59999999999
27 MRF (Dallas) Film bale Film 2 12530.279999999999 12530.279999999999 0.0 -125302.79999999999
28 MRF (Dallas) Film bale Paper 1 112.97999999999999 112.97999999999999 0.0 -1129.8
29 MRF (Dallas) Film bale Paper 2 245.06 245.06 0.0 -2450.6
30 MRF (Dallas) Film bale Cardboard 1 256.36 256.36 0.0 -2563.6000000000004
31 MRF (Dallas) Film bale Cardboard 2 296.88 296.88 0.0 -2968.8
32 MRF (Dallas) Cardboard bale Paper 1 112.97999999999774 0.0 112.97999999999774 -0.0
33 MRF (Dallas) Cardboard bale Paper 2 245.06 0.0 245.06 -0.0
34 MRF (Dallas) Cardboard bale Cardboard 1 9613.5 0.0 9613.5 -0.0
35 MRF (Dallas) Cardboard bale Cardboard 2 11133.0 0.0 11133.0 -0.0
36 Paper Mill (Chicago) Cardboard sheets Cardboard 1 1603.8374999999999 1603.8374999999999 0.0 -160383.75
37 Paper Mill (Chicago) Cardboard sheets Cardboard 2 5610.224999999999 5610.224999999999 0.0 -561022.5

@ -0,0 +1,13 @@
plant,time,is open?,opening cost ($),fixed operating cost ($)
MRF (Chicago),1,1.0,10000.0,1000.0
MRF (Chicago),2,1.0,0.0,1000.0
Paper Mill (Phoenix),1,1.0,10000.0,1000.0
Paper Mill (Phoenix),2,1.0,0.0,1000.0
Paper Mill (Dallas),1,1.0,10000.0,1000.0
Paper Mill (Dallas),2,1.0,0.0,1000.0
MRF (Phoenix),1,1.0,10000.0,1000.0
MRF (Phoenix),2,1.0,0.0,1000.0
MRF (Dallas),1,1.0,10000.0,1000.0
MRF (Dallas),2,1.0,0.0,1000.0
Paper Mill (Chicago),1,1.0,10000.0,1000.0
Paper Mill (Chicago),2,1.0,0.0,1000.0
1 plant time is open? opening cost ($) fixed operating cost ($)
2 MRF (Chicago) 1 1.0 10000.0 1000.0
3 MRF (Chicago) 2 1.0 0.0 1000.0
4 Paper Mill (Phoenix) 1 1.0 10000.0 1000.0
5 Paper Mill (Phoenix) 2 1.0 0.0 1000.0
6 Paper Mill (Dallas) 1 1.0 10000.0 1000.0
7 Paper Mill (Dallas) 2 1.0 0.0 1000.0
8 MRF (Phoenix) 1 1.0 10000.0 1000.0
9 MRF (Phoenix) 2 1.0 0.0 1000.0
10 MRF (Dallas) 1 1.0 10000.0 1000.0
11 MRF (Dallas) 2 1.0 0.0 1000.0
12 Paper Mill (Chicago) 1 1.0 10000.0 1000.0
13 Paper Mill (Chicago) 2 1.0 0.0 1000.0

@ -0,0 +1,28 @@
source,destination,product,emission,time,distance (km),amount sent (tonne),amount emitted (tonne),emission cost ($)
MRF (Chicago),Paper Mill (Chicago),Cardboard bale,CO2,1,0.0,1780.95,0.0,0.0
MRF (Chicago),Paper Mill (Chicago),Cardboard bale,CO2,2,0.0,6210.079999999999,0.0,0.0
MRF (Phoenix),Paper Mill (Phoenix),Cardboard bale,CO2,1,0.0,11196.120000000003,0.0,0.0
MRF (Phoenix),Paper Mill (Phoenix),Cardboard bale,CO2,2,0.0,12197.71,0.0,0.0
MRF (Dallas),Paper Mill (Dallas),Cardboard bale,CO2,1,0.0,9726.479999999998,0.0,0.0
MRF (Dallas),Paper Mill (Dallas),Cardboard bale,CO2,2,0.0,11378.06,0.0,0.0
Collection (San Antonio),MRF (Dallas),Waste,CO2,1,476.098,864.0,4113.48672,41.1348672
Collection (San Antonio),MRF (Dallas),Waste,CO2,2,476.098,12720.0,60559.6656,605.596656
Collection (San Jose),MRF (Phoenix),Waste,CO2,1,1173.985,4016.0,47147.23759999999,471.47237599999994
Collection (San Jose),MRF (Phoenix),Waste,CO2,2,1173.985,7392.0,86780.97119999999,867.8097119999999
Collection (San Jose),MRF (Dallas),Waste,CO2,2,2705.116,7488.0,202559.08608,2025.5908608000002
Collection (New York City),MRF (Chicago),Waste,CO2,1,1293.755,2178.0,28177.983900000003,281.77983900000004
Collection (New York City),MRF (Chicago),Waste,CO2,2,1293.755,14190.0,183583.83450000003,1835.8383450000003
Collection (Los Angeles),MRF (Phoenix),Waste,CO2,1,668.923,13000.0,86959.99,869.5999
Collection (Los Angeles),MRF (Phoenix),Waste,CO2,2,668.923,17825.0,119235.52475,1192.3552475
Collection (Chicago),MRF (Chicago),Waste,CO2,1,0.0,4654.0,0.0,0.0
Collection (Chicago),MRF (Chicago),Waste,CO2,2,0.0,9061.0,0.0,0.0
Collection (Dallas),MRF (Dallas),Waste,CO2,1,0.0,11648.0,0.0,0.0
Collection (Dallas),MRF (Dallas),Waste,CO2,2,0.0,9952.0,0.0,0.0
Collection (Phoenix),MRF (Phoenix),Waste,CO2,1,0.0,15267.0,0.0,0.0
Collection (Phoenix),MRF (Phoenix),Waste,CO2,2,0.0,9555.0,0.0,0.0
Collection (San Diego),MRF (Phoenix),Waste,CO2,1,567.242,12042.0,68307.28164,683.0728164000001
Collection (San Diego),MRF (Phoenix),Waste,CO2,2,567.242,15228.0,86379.61176,863.7961176
Collection (Philadelphia),MRF (Chicago),Waste,CO2,1,1244.116,1980.0,24633.4968,246.334968
Collection (Philadelphia),MRF (Chicago),Waste,CO2,2,1244.116,8658.0,107715.56328,1077.1556328000001
Collection (Houston),MRF (Dallas),Waste,CO2,1,411.89,14007.0,57693.4323,576.9343230000001
Collection (Houston),MRF (Dallas),Waste,CO2,2,411.89,9723.0,40048.0647,400.48064700000003
1 source destination product emission time distance (km) amount sent (tonne) amount emitted (tonne) emission cost ($)
2 MRF (Chicago) Paper Mill (Chicago) Cardboard bale CO2 1 0.0 1780.95 0.0 0.0
3 MRF (Chicago) Paper Mill (Chicago) Cardboard bale CO2 2 0.0 6210.079999999999 0.0 0.0
4 MRF (Phoenix) Paper Mill (Phoenix) Cardboard bale CO2 1 0.0 11196.120000000003 0.0 0.0
5 MRF (Phoenix) Paper Mill (Phoenix) Cardboard bale CO2 2 0.0 12197.71 0.0 0.0
6 MRF (Dallas) Paper Mill (Dallas) Cardboard bale CO2 1 0.0 9726.479999999998 0.0 0.0
7 MRF (Dallas) Paper Mill (Dallas) Cardboard bale CO2 2 0.0 11378.06 0.0 0.0
8 Collection (San Antonio) MRF (Dallas) Waste CO2 1 476.098 864.0 4113.48672 41.1348672
9 Collection (San Antonio) MRF (Dallas) Waste CO2 2 476.098 12720.0 60559.6656 605.596656
10 Collection (San Jose) MRF (Phoenix) Waste CO2 1 1173.985 4016.0 47147.23759999999 471.47237599999994
11 Collection (San Jose) MRF (Phoenix) Waste CO2 2 1173.985 7392.0 86780.97119999999 867.8097119999999
12 Collection (San Jose) MRF (Dallas) Waste CO2 2 2705.116 7488.0 202559.08608 2025.5908608000002
13 Collection (New York City) MRF (Chicago) Waste CO2 1 1293.755 2178.0 28177.983900000003 281.77983900000004
14 Collection (New York City) MRF (Chicago) Waste CO2 2 1293.755 14190.0 183583.83450000003 1835.8383450000003
15 Collection (Los Angeles) MRF (Phoenix) Waste CO2 1 668.923 13000.0 86959.99 869.5999
16 Collection (Los Angeles) MRF (Phoenix) Waste CO2 2 668.923 17825.0 119235.52475 1192.3552475
17 Collection (Chicago) MRF (Chicago) Waste CO2 1 0.0 4654.0 0.0 0.0
18 Collection (Chicago) MRF (Chicago) Waste CO2 2 0.0 9061.0 0.0 0.0
19 Collection (Dallas) MRF (Dallas) Waste CO2 1 0.0 11648.0 0.0 0.0
20 Collection (Dallas) MRF (Dallas) Waste CO2 2 0.0 9952.0 0.0 0.0
21 Collection (Phoenix) MRF (Phoenix) Waste CO2 1 0.0 15267.0 0.0 0.0
22 Collection (Phoenix) MRF (Phoenix) Waste CO2 2 0.0 9555.0 0.0 0.0
23 Collection (San Diego) MRF (Phoenix) Waste CO2 1 567.242 12042.0 68307.28164 683.0728164000001
24 Collection (San Diego) MRF (Phoenix) Waste CO2 2 567.242 15228.0 86379.61176 863.7961176
25 Collection (Philadelphia) MRF (Chicago) Waste CO2 1 1244.116 1980.0 24633.4968 246.334968
26 Collection (Philadelphia) MRF (Chicago) Waste CO2 2 1244.116 8658.0 107715.56328 1077.1556328000001
27 Collection (Houston) MRF (Dallas) Waste CO2 1 411.89 14007.0 57693.4323 576.9343230000001
28 Collection (Houston) MRF (Dallas) Waste CO2 2 411.89 9723.0 40048.0647 400.48064700000003

@ -0,0 +1,76 @@
source,destination,product,component,time,distance (km),amount sent (tonne),transportation cost ($),variable operating cost ($)
MRF (Chicago),Paper Mill (Chicago),Cardboard bale,Paper,1,0.0,92.70000000000002,0.0,92.70000000000002
MRF (Chicago),Paper Mill (Chicago),Cardboard bale,Paper,2,0.0,304.579999999999,0.0,304.579999999999
MRF (Chicago),Paper Mill (Chicago),Cardboard bale,Cardboard,1,0.0,1688.25,0.0,1688.25
MRF (Chicago),Paper Mill (Chicago),Cardboard bale,Cardboard,2,0.0,5905.5,0.0,5905.5
MRF (Phoenix),Paper Mill (Phoenix),Cardboard bale,Paper,1,0.0,280.6200000000026,0.0,280.6200000000026
MRF (Phoenix),Paper Mill (Phoenix),Cardboard bale,Paper,2,0.0,307.96000000000004,0.0,307.96000000000004
MRF (Phoenix),Paper Mill (Phoenix),Cardboard bale,Cardboard,1,0.0,10915.5,0.0,10915.5
MRF (Phoenix),Paper Mill (Phoenix),Cardboard bale,Cardboard,2,0.0,11889.75,0.0,11889.75
MRF (Dallas),Paper Mill (Dallas),Cardboard bale,Paper,1,0.0,112.97999999999774,0.0,112.97999999999774
MRF (Dallas),Paper Mill (Dallas),Cardboard bale,Paper,2,0.0,245.06,0.0,245.06
MRF (Dallas),Paper Mill (Dallas),Cardboard bale,Cardboard,1,0.0,9613.5,0.0,9613.5
MRF (Dallas),Paper Mill (Dallas),Cardboard bale,Cardboard,2,0.0,11133.0,0.0,11133.0
Collection (San Antonio),MRF (Dallas),Waste,Film,1,476.098,288.0,6855.811200000001,288.0
Collection (San Antonio),MRF (Dallas),Waste,Film,2,476.098,4240.0,100932.77600000001,4240.0
Collection (San Antonio),MRF (Dallas),Waste,Paper,1,476.098,252.00000000000003,5998.834800000001,252.00000000000003
Collection (San Antonio),MRF (Dallas),Waste,Paper,2,476.098,3710.0000000000005,88316.17900000002,3710.0000000000005
Collection (San Antonio),MRF (Dallas),Waste,Cardboard,1,476.098,324.0,7712.7876000000015,324.0
Collection (San Antonio),MRF (Dallas),Waste,Cardboard,2,476.098,4770.0,113549.37300000002,4770.0
Collection (San Jose),MRF (Phoenix),Waste,Film,1,1173.985,1255.0,73667.55875,1255.0
Collection (San Jose),MRF (Phoenix),Waste,Film,2,1173.985,2310.0,135595.2675,2310.0
Collection (San Jose),MRF (Phoenix),Waste,Paper,1,1173.985,2510.0,147335.1175,2510.0
Collection (San Jose),MRF (Phoenix),Waste,Paper,2,1173.985,4620.0,271190.535,4620.0
Collection (San Jose),MRF (Phoenix),Waste,Cardboard,1,1173.985,251.0,14733.51175,251.0
Collection (San Jose),MRF (Phoenix),Waste,Cardboard,2,1173.985,462.0,27119.053499999998,462.0
Collection (San Jose),MRF (Dallas),Waste,Film,2,2705.116,2340.0,316498.572,2340.0
Collection (San Jose),MRF (Dallas),Waste,Paper,2,2705.116,4680.0,632997.144,4680.0
Collection (San Jose),MRF (Dallas),Waste,Cardboard,2,2705.116,468.0,63299.7144,468.0
Collection (New York City),MRF (Chicago),Waste,Film,1,1293.755,990.0,64040.872500000005,990.0
Collection (New York City),MRF (Chicago),Waste,Film,2,1293.755,6450.0,417235.98750000005,6450.0
Collection (New York City),MRF (Chicago),Waste,Paper,1,1293.755,891.0,57636.78525000001,891.0
Collection (New York City),MRF (Chicago),Waste,Paper,2,1293.755,5805.0,375512.38875000004,5805.0
Collection (New York City),MRF (Chicago),Waste,Cardboard,1,1293.755,297.0,19212.26175,297.0
Collection (New York City),MRF (Chicago),Waste,Cardboard,2,1293.755,1934.9999999999998,125170.79625,1934.9999999999998
Collection (Los Angeles),MRF (Phoenix),Waste,Film,1,668.923,4160.0,139135.98400000003,4160.0
Collection (Los Angeles),MRF (Phoenix),Waste,Film,2,668.923,5704.0,190776.8396,5704.0
Collection (Los Angeles),MRF (Phoenix),Waste,Paper,1,668.923,3640.0000000000005,121743.98600000002,3640.0000000000005
Collection (Los Angeles),MRF (Phoenix),Waste,Paper,2,668.923,4991.000000000001,166929.73465000006,4991.000000000001
Collection (Los Angeles),MRF (Phoenix),Waste,Cardboard,1,668.923,5200.0,173919.98,5200.0
Collection (Los Angeles),MRF (Phoenix),Waste,Cardboard,2,668.923,7130.0,238471.04950000002,7130.0
Collection (Chicago),MRF (Chicago),Waste,Film,1,0.0,716.0,0.0,716.0
Collection (Chicago),MRF (Chicago),Waste,Film,2,0.0,1394.0,0.0,1394.0
Collection (Chicago),MRF (Chicago),Waste,Paper,1,0.0,2864.0,0.0,2864.0
Collection (Chicago),MRF (Chicago),Waste,Paper,2,0.0,5576.0,0.0,5576.0
Collection (Chicago),MRF (Chicago),Waste,Cardboard,1,0.0,1074.0,0.0,1074.0
Collection (Chicago),MRF (Chicago),Waste,Cardboard,2,0.0,2091.0,0.0,2091.0
Collection (Dallas),MRF (Dallas),Waste,Film,1,0.0,5096.0,0.0,5096.0
Collection (Dallas),MRF (Dallas),Waste,Film,2,0.0,4354.0,0.0,4354.0
Collection (Dallas),MRF (Dallas),Waste,Paper,1,0.0,728.0,0.0,728.0
Collection (Dallas),MRF (Dallas),Waste,Paper,2,0.0,622.0,0.0,622.0
Collection (Dallas),MRF (Dallas),Waste,Cardboard,1,0.0,5824.0,0.0,5824.0
Collection (Dallas),MRF (Dallas),Waste,Cardboard,2,0.0,4976.0,0.0,4976.0
Collection (Phoenix),MRF (Phoenix),Waste,Film,1,0.0,3635.0,0.0,3635.0
Collection (Phoenix),MRF (Phoenix),Waste,Film,2,0.0,2275.0,0.0,2275.0
Collection (Phoenix),MRF (Phoenix),Waste,Paper,1,0.0,6543.0,0.0,6543.0
Collection (Phoenix),MRF (Phoenix),Waste,Paper,2,0.0,4095.0,0.0,4095.0
Collection (Phoenix),MRF (Phoenix),Waste,Cardboard,1,0.0,5089.0,0.0,5089.0
Collection (Phoenix),MRF (Phoenix),Waste,Cardboard,2,0.0,3185.0,0.0,3185.0
Collection (San Diego),MRF (Phoenix),Waste,Film,1,567.242,6690.0,189742.449,6690.0
Collection (San Diego),MRF (Phoenix),Waste,Film,2,567.242,8460.0,239943.36599999998,8460.0
Collection (San Diego),MRF (Phoenix),Waste,Paper,1,567.242,1338.0,37948.489799999996,1338.0
Collection (San Diego),MRF (Phoenix),Waste,Paper,2,567.242,1692.0,47988.6732,1692.0
Collection (San Diego),MRF (Phoenix),Waste,Cardboard,1,567.242,4014.0,113845.46939999999,4014.0
Collection (San Diego),MRF (Phoenix),Waste,Cardboard,2,567.242,5076.0,143966.0196,5076.0
Collection (Philadelphia),MRF (Chicago),Waste,Film,1,1244.116,220.0,13685.276000000002,220.0
Collection (Philadelphia),MRF (Chicago),Waste,Film,2,1244.116,962.0,59841.979600000006,962.0
Collection (Philadelphia),MRF (Chicago),Waste,Paper,1,1244.116,880.0,54741.10400000001,880.0
Collection (Philadelphia),MRF (Chicago),Waste,Paper,2,1244.116,3848.0,239367.91840000002,3848.0
Collection (Philadelphia),MRF (Chicago),Waste,Cardboard,1,1244.116,880.0,54741.10400000001,880.0
Collection (Philadelphia),MRF (Chicago),Waste,Cardboard,2,1244.116,3848.0,239367.91840000002,3848.0
Collection (Houston),MRF (Dallas),Waste,Film,1,411.89,2668.0,54946.126,2668.0
Collection (Houston),MRF (Dallas),Waste,Film,2,411.89,1852.0,38141.014,1852.0
Collection (Houston),MRF (Dallas),Waste,Paper,1,411.89,4669.0,96155.7205,4669.0
Collection (Houston),MRF (Dallas),Waste,Paper,2,411.89,3241.0,66746.7745,3241.0
Collection (Houston),MRF (Dallas),Waste,Cardboard,1,411.89,6670.0,137365.315,6670.0
Collection (Houston),MRF (Dallas),Waste,Cardboard,2,411.89,4630.0,95352.535,4630.0
1 source destination product component time distance (km) amount sent (tonne) transportation cost ($) variable operating cost ($)
2 MRF (Chicago) Paper Mill (Chicago) Cardboard bale Paper 1 0.0 92.70000000000002 0.0 92.70000000000002
3 MRF (Chicago) Paper Mill (Chicago) Cardboard bale Paper 2 0.0 304.579999999999 0.0 304.579999999999
4 MRF (Chicago) Paper Mill (Chicago) Cardboard bale Cardboard 1 0.0 1688.25 0.0 1688.25
5 MRF (Chicago) Paper Mill (Chicago) Cardboard bale Cardboard 2 0.0 5905.5 0.0 5905.5
6 MRF (Phoenix) Paper Mill (Phoenix) Cardboard bale Paper 1 0.0 280.6200000000026 0.0 280.6200000000026
7 MRF (Phoenix) Paper Mill (Phoenix) Cardboard bale Paper 2 0.0 307.96000000000004 0.0 307.96000000000004
8 MRF (Phoenix) Paper Mill (Phoenix) Cardboard bale Cardboard 1 0.0 10915.5 0.0 10915.5
9 MRF (Phoenix) Paper Mill (Phoenix) Cardboard bale Cardboard 2 0.0 11889.75 0.0 11889.75
10 MRF (Dallas) Paper Mill (Dallas) Cardboard bale Paper 1 0.0 112.97999999999774 0.0 112.97999999999774
11 MRF (Dallas) Paper Mill (Dallas) Cardboard bale Paper 2 0.0 245.06 0.0 245.06
12 MRF (Dallas) Paper Mill (Dallas) Cardboard bale Cardboard 1 0.0 9613.5 0.0 9613.5
13 MRF (Dallas) Paper Mill (Dallas) Cardboard bale Cardboard 2 0.0 11133.0 0.0 11133.0
14 Collection (San Antonio) MRF (Dallas) Waste Film 1 476.098 288.0 6855.811200000001 288.0
15 Collection (San Antonio) MRF (Dallas) Waste Film 2 476.098 4240.0 100932.77600000001 4240.0
16 Collection (San Antonio) MRF (Dallas) Waste Paper 1 476.098 252.00000000000003 5998.834800000001 252.00000000000003
17 Collection (San Antonio) MRF (Dallas) Waste Paper 2 476.098 3710.0000000000005 88316.17900000002 3710.0000000000005
18 Collection (San Antonio) MRF (Dallas) Waste Cardboard 1 476.098 324.0 7712.7876000000015 324.0
19 Collection (San Antonio) MRF (Dallas) Waste Cardboard 2 476.098 4770.0 113549.37300000002 4770.0
20 Collection (San Jose) MRF (Phoenix) Waste Film 1 1173.985 1255.0 73667.55875 1255.0
21 Collection (San Jose) MRF (Phoenix) Waste Film 2 1173.985 2310.0 135595.2675 2310.0
22 Collection (San Jose) MRF (Phoenix) Waste Paper 1 1173.985 2510.0 147335.1175 2510.0
23 Collection (San Jose) MRF (Phoenix) Waste Paper 2 1173.985 4620.0 271190.535 4620.0
24 Collection (San Jose) MRF (Phoenix) Waste Cardboard 1 1173.985 251.0 14733.51175 251.0
25 Collection (San Jose) MRF (Phoenix) Waste Cardboard 2 1173.985 462.0 27119.053499999998 462.0
26 Collection (San Jose) MRF (Dallas) Waste Film 2 2705.116 2340.0 316498.572 2340.0
27 Collection (San Jose) MRF (Dallas) Waste Paper 2 2705.116 4680.0 632997.144 4680.0
28 Collection (San Jose) MRF (Dallas) Waste Cardboard 2 2705.116 468.0 63299.7144 468.0
29 Collection (New York City) MRF (Chicago) Waste Film 1 1293.755 990.0 64040.872500000005 990.0
30 Collection (New York City) MRF (Chicago) Waste Film 2 1293.755 6450.0 417235.98750000005 6450.0
31 Collection (New York City) MRF (Chicago) Waste Paper 1 1293.755 891.0 57636.78525000001 891.0
32 Collection (New York City) MRF (Chicago) Waste Paper 2 1293.755 5805.0 375512.38875000004 5805.0
33 Collection (New York City) MRF (Chicago) Waste Cardboard 1 1293.755 297.0 19212.26175 297.0
34 Collection (New York City) MRF (Chicago) Waste Cardboard 2 1293.755 1934.9999999999998 125170.79625 1934.9999999999998
35 Collection (Los Angeles) MRF (Phoenix) Waste Film 1 668.923 4160.0 139135.98400000003 4160.0
36 Collection (Los Angeles) MRF (Phoenix) Waste Film 2 668.923 5704.0 190776.8396 5704.0
37 Collection (Los Angeles) MRF (Phoenix) Waste Paper 1 668.923 3640.0000000000005 121743.98600000002 3640.0000000000005
38 Collection (Los Angeles) MRF (Phoenix) Waste Paper 2 668.923 4991.000000000001 166929.73465000006 4991.000000000001
39 Collection (Los Angeles) MRF (Phoenix) Waste Cardboard 1 668.923 5200.0 173919.98 5200.0
40 Collection (Los Angeles) MRF (Phoenix) Waste Cardboard 2 668.923 7130.0 238471.04950000002 7130.0
41 Collection (Chicago) MRF (Chicago) Waste Film 1 0.0 716.0 0.0 716.0
42 Collection (Chicago) MRF (Chicago) Waste Film 2 0.0 1394.0 0.0 1394.0
43 Collection (Chicago) MRF (Chicago) Waste Paper 1 0.0 2864.0 0.0 2864.0
44 Collection (Chicago) MRF (Chicago) Waste Paper 2 0.0 5576.0 0.0 5576.0
45 Collection (Chicago) MRF (Chicago) Waste Cardboard 1 0.0 1074.0 0.0 1074.0
46 Collection (Chicago) MRF (Chicago) Waste Cardboard 2 0.0 2091.0 0.0 2091.0
47 Collection (Dallas) MRF (Dallas) Waste Film 1 0.0 5096.0 0.0 5096.0
48 Collection (Dallas) MRF (Dallas) Waste Film 2 0.0 4354.0 0.0 4354.0
49 Collection (Dallas) MRF (Dallas) Waste Paper 1 0.0 728.0 0.0 728.0
50 Collection (Dallas) MRF (Dallas) Waste Paper 2 0.0 622.0 0.0 622.0
51 Collection (Dallas) MRF (Dallas) Waste Cardboard 1 0.0 5824.0 0.0 5824.0
52 Collection (Dallas) MRF (Dallas) Waste Cardboard 2 0.0 4976.0 0.0 4976.0
53 Collection (Phoenix) MRF (Phoenix) Waste Film 1 0.0 3635.0 0.0 3635.0
54 Collection (Phoenix) MRF (Phoenix) Waste Film 2 0.0 2275.0 0.0 2275.0
55 Collection (Phoenix) MRF (Phoenix) Waste Paper 1 0.0 6543.0 0.0 6543.0
56 Collection (Phoenix) MRF (Phoenix) Waste Paper 2 0.0 4095.0 0.0 4095.0
57 Collection (Phoenix) MRF (Phoenix) Waste Cardboard 1 0.0 5089.0 0.0 5089.0
58 Collection (Phoenix) MRF (Phoenix) Waste Cardboard 2 0.0 3185.0 0.0 3185.0
59 Collection (San Diego) MRF (Phoenix) Waste Film 1 567.242 6690.0 189742.449 6690.0
60 Collection (San Diego) MRF (Phoenix) Waste Film 2 567.242 8460.0 239943.36599999998 8460.0
61 Collection (San Diego) MRF (Phoenix) Waste Paper 1 567.242 1338.0 37948.489799999996 1338.0
62 Collection (San Diego) MRF (Phoenix) Waste Paper 2 567.242 1692.0 47988.6732 1692.0
63 Collection (San Diego) MRF (Phoenix) Waste Cardboard 1 567.242 4014.0 113845.46939999999 4014.0
64 Collection (San Diego) MRF (Phoenix) Waste Cardboard 2 567.242 5076.0 143966.0196 5076.0
65 Collection (Philadelphia) MRF (Chicago) Waste Film 1 1244.116 220.0 13685.276000000002 220.0
66 Collection (Philadelphia) MRF (Chicago) Waste Film 2 1244.116 962.0 59841.979600000006 962.0
67 Collection (Philadelphia) MRF (Chicago) Waste Paper 1 1244.116 880.0 54741.10400000001 880.0
68 Collection (Philadelphia) MRF (Chicago) Waste Paper 2 1244.116 3848.0 239367.91840000002 3848.0
69 Collection (Philadelphia) MRF (Chicago) Waste Cardboard 1 1244.116 880.0 54741.10400000001 880.0
70 Collection (Philadelphia) MRF (Chicago) Waste Cardboard 2 1244.116 3848.0 239367.91840000002 3848.0
71 Collection (Houston) MRF (Dallas) Waste Film 1 411.89 2668.0 54946.126 2668.0
72 Collection (Houston) MRF (Dallas) Waste Film 2 411.89 1852.0 38141.014 1852.0
73 Collection (Houston) MRF (Dallas) Waste Paper 1 411.89 4669.0 96155.7205 4669.0
74 Collection (Houston) MRF (Dallas) Waste Paper 2 411.89 3241.0 66746.7745 3241.0
75 Collection (Houston) MRF (Dallas) Waste Cardboard 1 411.89 6670.0 137365.315 6670.0
76 Collection (Houston) MRF (Dallas) Waste Cardboard 2 411.89 4630.0 95352.535 4630.0
Loading…
Cancel
Save