Split files

feature/lint
Alinson S. Xavier 4 years ago
parent 849f902562
commit 9df416ed75

@ -3,8 +3,23 @@
# Released under the modified BSD license. See COPYING.md for more details. # Released under the modified BSD license. See COPYING.md for more details.
module RELOG module RELOG
include("instance.jl")
include("graph.jl") include("instance/structs.jl")
include("model.jl")
include("reports.jl") include("graph/structs.jl")
include("graph/build.jl")
include("graph/csv.jl")
include("instance/compress.jl")
include("instance/parse.jl")
include("instance/validate.jl")
include("model/build.jl")
include("model/getsol.jl")
include("model/solve.jl")
include("reports/plant_emissions.jl")
include("reports/plant_outputs.jl")
include("reports/plants.jl")
include("reports/tr_emissions.jl")
include("reports/tr.jl")
include("reports/write.jl")
end end

@ -4,42 +4,12 @@
using Geodesy using Geodesy
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
abstract type Node end x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(distance(x, y) / 1000.0, digits = 2)
mutable struct Arc
source::Node
dest::Node
values::Dict{String,Float64}
end
mutable struct ProcessNode <: Node
index::Int
location::Plant
incoming_arcs::Array{Arc}
outgoing_arcs::Array{Arc}
end
mutable struct ShippingNode <: Node
index::Int
location::Union{Plant,CollectionCenter}
product::Product
incoming_arcs::Array{Arc}
outgoing_arcs::Array{Arc}
end
mutable struct Graph
process_nodes::Array{ProcessNode}
plant_shipping_nodes::Array{ShippingNode}
collection_shipping_nodes::Array{ShippingNode}
arcs::Array{Arc}
end end
function build_graph(instance::Instance)::Graph function build_graph(instance::Instance)::Graph
arcs = [] arcs = []
next_index = 0 next_index = 0
@ -105,19 +75,3 @@ function build_graph(instance::Instance)::Graph
return Graph(process_nodes, plant_shipping_nodes, collection_shipping_nodes, arcs) return Graph(process_nodes, plant_shipping_nodes, collection_shipping_nodes, arcs)
end end
function to_csv(graph::Graph)
result = ""
for a in graph.arcs
result *= "$(a.source.index),$(a.dest.index)\n"
end
return result
end
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(distance(x, y) / 1000.0, digits = 2)
end

@ -0,0 +1,11 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function to_csv(graph::Graph)
result = ""
for a in graph.arcs
result *= "$(a.source.index),$(a.dest.index)\n"
end
return result
end

@ -0,0 +1,35 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
abstract type Node end
mutable struct Arc
source::Node
dest::Node
values::Dict{String,Float64}
end
mutable struct ProcessNode <: Node
index::Int
location::Plant
incoming_arcs::Array{Arc}
outgoing_arcs::Array{Arc}
end
mutable struct ShippingNode <: Node
index::Int
location::Union{Plant,CollectionCenter}
product::Product
incoming_arcs::Array{Arc}
outgoing_arcs::Array{Arc}
end
mutable struct Graph
process_nodes::Array{ProcessNode}
plant_shipping_nodes::Array{ShippingNode}
collection_shipping_nodes::Array{ShippingNode}
arcs::Array{Arc}
end

@ -0,0 +1,60 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
"""
_compress(instance::Instance)
Create a single-period instance from a multi-period one. Specifically,
replaces every time-dependent attribute, such as initial_amounts,
by a list with a single element, which is either a sum, an average,
or something else that makes sense to that specific attribute.
"""
function _compress(instance::Instance)::Instance
T = instance.time
compressed = deepcopy(instance)
compressed.time = 1
compressed.building_period = [1]
# Compress products
for p in compressed.products
p.transportation_cost = [mean(p.transportation_cost)]
p.transportation_energy = [mean(p.transportation_energy)]
for (emission_name, emission_value) in p.transportation_emissions
p.transportation_emissions[emission_name] = [mean(emission_value)]
end
end
# Compress collection centers
for c in compressed.collection_centers
c.amount = [maximum(c.amount) * T]
end
# Compress plants
for plant in compressed.plants
plant.energy = [mean(plant.energy)]
for (emission_name, emission_value) in plant.emissions
plant.emissions[emission_name] = [mean(emission_value)]
end
for s in plant.sizes
s.capacity *= T
s.variable_operating_cost = [mean(s.variable_operating_cost)]
s.opening_cost = [s.opening_cost[1]]
s.fixed_operating_cost = [sum(s.fixed_operating_cost)]
end
for (prod_name, disp_limit) in plant.disposal_limit
plant.disposal_limit[prod_name] = [sum(disp_limit)]
end
for (prod_name, disp_cost) in plant.disposal_cost
plant.disposal_cost[prod_name] = [mean(disp_cost)]
end
end
return compressed
end

@ -8,85 +8,13 @@ using JSONSchema
using Printf using Printf
using Statistics using Statistics
mutable struct Product
name::String
transportation_cost::Array{Float64}
transportation_energy::Array{Float64}
transportation_emissions::Dict{String,Array{Float64}}
end
mutable struct CollectionCenter
index::Int64
name::String
latitude::Float64
longitude::Float64
product::Product
amount::Array{Float64}
end
mutable struct PlantSize
capacity::Float64
variable_operating_cost::Array{Float64}
fixed_operating_cost::Array{Float64}
opening_cost::Array{Float64}
end
mutable struct Plant
index::Int64
plant_name::String
location_name::String
input::Product
output::Dict{Product,Float64}
latitude::Float64
longitude::Float64
disposal_limit::Dict{Product,Array{Float64}}
disposal_cost::Dict{Product,Array{Float64}}
sizes::Array{PlantSize}
energy::Array{Float64}
emissions::Dict{String,Array{Float64}}
storage_limit::Float64
storage_cost::Array{Float64}
end
mutable struct Instance
time::Int64
products::Array{Product,1}
collection_centers::Array{CollectionCenter,1}
plants::Array{Plant,1}
building_period::Array{Int64}
end
function validate(json, schema)
result = JSONSchema.validate(json, schema)
if result !== nothing
if result isa JSONSchema.SingleIssue
path = join(result.path, "")
if length(path) == 0
path = "root"
end
msg = "$(result.msg) in $(path)"
else
msg = convert(String, result)
end
throw(msg)
end
end
function parsefile(path::String)::Instance function parsefile(path::String)::Instance
return RELOG.parse(JSON.parsefile(path)) return RELOG.parse(JSON.parsefile(path))
end end
function parse(json)::Instance function parse(json)::Instance
basedir = dirname(@__FILE__) basedir = dirname(@__FILE__)
json_schema = JSON.parsefile("$basedir/schemas/input.json") json_schema = JSON.parsefile("$basedir/../schemas/input.json")
validate(json, Schema(json_schema)) validate(json, Schema(json_schema))
T = json["parameters"]["time horizon (years)"] T = json["parameters"]["time horizon (years)"]
@ -238,55 +166,3 @@ function parse(json)::Instance
return Instance(T, products, collection_centers, plants, building_period) return Instance(T, products, collection_centers, plants, building_period)
end end
"""
_compress(instance::Instance)
Create a single-period instance from a multi-period one. Specifically,
replaces every time-dependent attribute, such as initial_amounts,
by a list with a single element, which is either a sum, an average,
or something else that makes sense to that specific attribute.
"""
function _compress(instance::Instance)::Instance
T = instance.time
compressed = deepcopy(instance)
compressed.time = 1
compressed.building_period = [1]
# Compress products
for p in compressed.products
p.transportation_cost = [mean(p.transportation_cost)]
p.transportation_energy = [mean(p.transportation_energy)]
for (emission_name, emission_value) in p.transportation_emissions
p.transportation_emissions[emission_name] = [mean(emission_value)]
end
end
# Compress collection centers
for c in compressed.collection_centers
c.amount = [maximum(c.amount) * T]
end
# Compress plants
for plant in compressed.plants
plant.energy = [mean(plant.energy)]
for (emission_name, emission_value) in plant.emissions
plant.emissions[emission_name] = [mean(emission_value)]
end
for s in plant.sizes
s.capacity *= T
s.variable_operating_cost = [mean(s.variable_operating_cost)]
s.opening_cost = [s.opening_cost[1]]
s.fixed_operating_cost = [sum(s.fixed_operating_cost)]
end
for (prod_name, disp_limit) in plant.disposal_limit
plant.disposal_limit[prod_name] = [sum(disp_limit)]
end
for (prod_name, disp_cost) in plant.disposal_cost
plant.disposal_cost[prod_name] = [mean(disp_cost)]
end
end
return compressed
end

@ -0,0 +1,57 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
mutable struct Product
name::String
transportation_cost::Array{Float64}
transportation_energy::Array{Float64}
transportation_emissions::Dict{String,Array{Float64}}
end
mutable struct CollectionCenter
index::Int64
name::String
latitude::Float64
longitude::Float64
product::Product
amount::Array{Float64}
end
mutable struct PlantSize
capacity::Float64
variable_operating_cost::Array{Float64}
fixed_operating_cost::Array{Float64}
opening_cost::Array{Float64}
end
mutable struct Plant
index::Int64
plant_name::String
location_name::String
input::Product
output::Dict{Product,Float64}
latitude::Float64
longitude::Float64
disposal_limit::Dict{Product,Array{Float64}}
disposal_cost::Dict{Product,Array{Float64}}
sizes::Array{PlantSize}
energy::Array{Float64}
emissions::Dict{String,Array{Float64}}
storage_limit::Float64
storage_cost::Array{Float64}
end
mutable struct Instance
time::Int64
products::Array{Product,1}
collection_centers::Array{CollectionCenter,1}
plants::Array{Plant,1}
building_period::Array{Int64}
end

@ -0,0 +1,25 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
function validate(json, schema)
result = JSONSchema.validate(json, schema)
if result !== nothing
if result isa JSONSchema.SingleIssue
path = join(result.path, "")
if length(path) == 0
path = "root"
end
msg = "$(result.msg) in $(path)"
else
msg = convert(String, result)
end
throw(msg)
end
end

@ -1,559 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function build_model(instance::Instance, graph::Graph, optimizer)::JuMP.Model
model = Model(optimizer)
model[:instance] = instance
model[:graph] = graph
create_vars!(model)
create_objective_function!(model)
create_shipping_node_constraints!(model)
create_process_node_constraints!(model)
return model
end
function create_vars!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:flow] =
Dict((a, t) => @variable(model, lower_bound = 0) for a in graph.arcs, t = 1:T)
model[:dispose] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.disposal_limit[n.product][t]
) for n in values(graph.plant_shipping_nodes), t = 1:T
)
model[:store] = Dict(
(n, t) =>
@variable(model, lower_bound = 0, upper_bound = n.location.storage_limit)
for n in values(graph.process_nodes), t = 1:T
)
model[:process] = Dict(
(n, t) => @variable(model, lower_bound = 0) for
n in values(graph.process_nodes), t = 1:T
)
model[:open_plant] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:is_open] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:capacity] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity
) for n in values(graph.process_nodes), t = 1:T
)
model[:expansion] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity - n.location.sizes[1].capacity
) for n in values(graph.process_nodes), t = 1:T
)
end
function slope_open(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function slope_fix_oper_cost(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function create_objective_function!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
obj = AffExpr(0.0)
# Process node costs
for n in values(graph.process_nodes), t = 1:T
# Transportation and variable operating costs
for a in n.incoming_arcs
c = n.location.input.transportation_cost[t] * a.values["distance"]
add_to_expression!(obj, c, model[:flow][a, t])
end
# Opening costs
add_to_expression!(
obj,
n.location.sizes[1].opening_cost[t],
model[:open_plant][n, t],
)
# Fixed operating costs (base)
add_to_expression!(
obj,
n.location.sizes[1].fixed_operating_cost[t],
model[:is_open][n, t],
)
# Fixed operating costs (expansion)
add_to_expression!(obj, slope_fix_oper_cost(n.location, t), model[:expansion][n, t])
# Processing costs
add_to_expression!(
obj,
n.location.sizes[1].variable_operating_cost[t],
model[:process][n, t],
)
# Storage costs
add_to_expression!(obj, n.location.storage_cost[t], model[:store][n, t])
# Expansion costs
if t < T
add_to_expression!(
obj,
slope_open(n.location, t) - slope_open(n.location, t + 1),
model[:expansion][n, t],
)
else
add_to_expression!(obj, slope_open(n.location, t), model[:expansion][n, t])
end
end
# Shipping node costs
for n in values(graph.plant_shipping_nodes), t = 1:T
# Disposal costs
add_to_expression!(
obj,
n.location.disposal_cost[n.product][t],
model[:dispose][n, t],
)
end
@objective(model, Min, obj)
end
function create_shipping_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:eq_balance] = OrderedDict()
for t = 1:T
# Collection centers
for n in graph.collection_shipping_nodes
model[:eq_balance][n, t] = @constraint(
model,
sum(model[:flow][a, t] for a in n.outgoing_arcs) == n.location.amount[t]
)
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(
model,
sum(model[:flow][a, t] for a in n.incoming_arcs) ==
sum(model[:flow][a, t] for a in n.outgoing_arcs) + model[:dispose][n, t]
)
end
end
end
function create_process_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
for t = 1:T, n in graph.process_nodes
input_sum = AffExpr(0.0)
for a in n.incoming_arcs
add_to_expression!(input_sum, 1.0, model[:flow][a, t])
end
# Output amount is implied by amount processed
for a in n.outgoing_arcs
@constraint(
model,
model[:flow][a, t] == a.values["weight"] * model[:process][n, t]
)
end
# If plant is closed, capacity is zero
@constraint(
model,
model[:capacity][n, t] <= n.location.sizes[2].capacity * model[:is_open][n, t]
)
# If plant is open, capacity is greater than base
@constraint(
model,
model[:capacity][n, t] >= n.location.sizes[1].capacity * model[:is_open][n, t]
)
# Capacity is linked to expansion
@constraint(
model,
model[:capacity][n, t] <=
n.location.sizes[1].capacity + model[:expansion][n, t]
)
# Can only process up to capacity
@constraint(model, model[:process][n, t] <= model[:capacity][n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(model, model[:capacity][n, t] >= model[:capacity][n, t-1])
@constraint(model, model[:expansion][n, t] >= model[:expansion][n, t-1])
end
# Amount received equals amount processed plus stored
store_in = 0
if t > 1
store_in = model[:store][n, t-1]
end
if t == T
@constraint(model, model[:store][n, t] == 0)
end
@constraint(
model,
input_sum + store_in == model[:store][n, t] + model[:process][n, t]
)
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(
model,
model[:is_open][n, t] == model[:is_open][n, t-1] + model[:open_plant][n, t]
)
else
@constraint(model, model[:is_open][n, t] == model[:open_plant][n, t])
end
# Plant can only be opened during building period
if t model[:instance].building_period
@constraint(model, model[:open_plant][n, t] == 0)
end
end
end
default_milp_optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
default_lp_optimizer = optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
function solve(
instance::Instance;
optimizer = nothing,
output = nothing,
marginal_costs = true,
)
milp_optimizer = lp_optimizer = optimizer
if optimizer == nothing
milp_optimizer = default_milp_optimizer
lp_optimizer = default_lp_optimizer
end
@info "Building graph..."
graph = RELOG.build_graph(instance)
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(
" %12d shipping nodes (collection)",
length(graph.collection_shipping_nodes)
)
@info @sprintf(" %12d arcs", length(graph.arcs))
@info "Building optimization model..."
model = RELOG.build_model(instance, graph, milp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model)
if !has_values(model)
@warn "No solution available"
return OrderedDict()
end
if marginal_costs
@info "Re-optimizing with integer variables fixed..."
all_vars = JuMP.all_variables(model)
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
JuMP.set_optimizer(model, lp_optimizer)
for var in all_vars
if JuMP.is_binary(var)
JuMP.unset_binary(var)
JuMP.fix(var, vals[var])
end
end
JuMP.optimize!(model)
end
@info "Extracting solution..."
solution = get_solution(model, marginal_costs = marginal_costs)
if output != nothing
write(solution, output)
end
return solution
end
function solve(filename::AbstractString; heuristic = false, kwargs...)
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
if heuristic && instance.time > 1
@info "Solving single-period version..."
compressed = _compress(instance)
csol = solve(compressed; output = nothing, marginal_costs = false, kwargs...)
@info "Filtering candidate locations..."
selected_pairs = []
for (plant_name, plant_dict) in csol["Plants"]
for (location_name, location_dict) in plant_dict
push!(selected_pairs, (plant_name, location_name))
end
end
filtered_plants = []
for p in instance.plants
if (p.plant_name, p.location_name) in selected_pairs
push!(filtered_plants, p)
end
end
instance.plants = filtered_plants
@info "Solving original version..."
end
sol = solve(instance; kwargs...)
return sol
end
function get_solution(model::JuMP.Model; marginal_costs = true)
graph, instance = model[:graph], model[:instance]
T = instance.time
output = OrderedDict(
"Plants" => OrderedDict(),
"Products" => OrderedDict(),
"Costs" => OrderedDict(
"Fixed operating (\$)" => zeros(T),
"Variable operating (\$)" => zeros(T),
"Opening (\$)" => zeros(T),
"Transportation (\$)" => zeros(T),
"Disposal (\$)" => zeros(T),
"Expansion (\$)" => zeros(T),
"Storage (\$)" => zeros(T),
"Total (\$)" => zeros(T),
),
"Energy" =>
OrderedDict("Plants (GJ)" => zeros(T), "Transportation (GJ)" => zeros(T)),
"Emissions" => OrderedDict(
"Plants (tonne)" => OrderedDict(),
"Transportation (tonne)" => OrderedDict(),
),
)
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
plant_to_shipping_nodes = OrderedDict()
for p in instance.plants
plant_to_shipping_nodes[p] = []
for a in plant_to_process_node[p].outgoing_arcs
push!(plant_to_shipping_nodes[p], a.dest)
end
end
# Products
if marginal_costs
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any,Any}(
"Marginal cost (\$/tonne)" => [
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for t = 1:T
],
)
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
end
# Plants
for plant in instance.plants
skip_plant = true
process_node = plant_to_process_node[plant]
plant_dict = OrderedDict{Any,Any}(
"Input" => OrderedDict(),
"Output" =>
OrderedDict("Send" => OrderedDict(), "Dispose" => OrderedDict()),
"Input product" => plant.input.name,
"Total input (tonne)" => [0.0 for t = 1:T],
"Total output" => OrderedDict(),
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" =>
[JuMP.value(model[:capacity][process_node, t]) for t = 1:T],
"Opening cost (\$)" => [
JuMP.value(model[:open_plant][process_node, t]) *
plant.sizes[1].opening_cost[t] for t = 1:T
],
"Fixed operating cost (\$)" => [
JuMP.value(model[:is_open][process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(model[:expansion][process_node, t]) *
slope_fix_oper_cost(plant, t) for t = 1:T
],
"Expansion cost (\$)" => [
(
if t == 1
slope_open(plant, t) * JuMP.value(model[:expansion][process_node, t])
else
slope_open(plant, t) * (
JuMP.value(model[:expansion][process_node, t]) -
JuMP.value(model[:expansion][process_node, t-1])
)
end
) for t = 1:T
],
"Process (tonne)" =>
[JuMP.value(model[:process][process_node, t]) for t = 1:T],
"Variable operating cost (\$)" => [
JuMP.value(model[:process][process_node, t]) *
plant.sizes[1].variable_operating_cost[t] for t = 1:T
],
"Storage (tonne)" =>
[JuMP.value(model[:store][process_node, t]) for t = 1:T],
"Storage cost (\$)" => [
JuMP.value(model[:store][process_node, t]) * plant.storage_cost[t]
for t = 1:T
],
)
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
output["Costs"]["Variable operating (\$)"] +=
plant_dict["Variable operating cost (\$)"]
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
output["Costs"]["Storage (\$)"] += plant_dict["Storage cost (\$)"]
# Inputs
for a in process_node.incoming_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict{Any,Any}(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.source.location.latitude,
"Longitude (deg)" => a.source.location.longitude,
"Transportation cost (\$)" =>
a.source.product.transportation_cost .* vals .* a.values["distance"],
"Transportation energy (J)" =>
vals .* a.values["distance"] .* a.source.product.transportation_energy,
"Emissions (tonne)" => OrderedDict(),
)
emissions_dict = output["Emissions"]["Transportation (tonne)"]
for (em_name, em_values) in a.source.product.transportation_emissions
dict["Emissions (tonne)"][em_name] =
em_values .* dict["Amount (tonne)"] .* a.values["distance"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
end
if a.source.location isa CollectionCenter
plant_name = "Origin"
location_name = a.source.location.name
else
plant_name = a.source.location.plant_name
location_name = a.source.location.location_name
end
if plant_name keys(plant_dict["Input"])
plant_dict["Input"][plant_name] = OrderedDict()
end
plant_dict["Input"][plant_name][location_name] = dict
plant_dict["Total input (tonne)"] += vals
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
output["Energy"]["Transportation (GJ)"] +=
dict["Transportation energy (J)"] / 1e9
end
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
plant_dict["Emissions (tonne)"] = OrderedDict()
emissions_dict = output["Emissions"]["Plants (tonne)"]
for (em_name, em_values) in plant.emissions
plant_dict["Emissions (tonne)"][em_name] =
em_values .* plant_dict["Total input (tonne)"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
end
# Outputs
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount = [JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] =
disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] =
[JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
disposal_dict["Cost (\$)"] = [
disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t] for t = 1:T
]
plant_dict["Total output"][product_name] += disposal_amount
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
end
for a in shipping_node.outgoing_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.dest.location.latitude,
"Longitude (deg)" => a.dest.location.longitude,
)
if a.dest.location.plant_name keys(product_dict)
product_dict[a.dest.location.plant_name] = OrderedDict()
end
product_dict[a.dest.location.plant_name][a.dest.location.location_name] =
dict
plant_dict["Total output"][product_name] += vals
end
end
if !skip_plant
if plant.plant_name keys(output["Plants"])
output["Plants"][plant.plant_name] = OrderedDict()
end
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
end
end
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
return output
end

@ -0,0 +1,250 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function build_model(instance::Instance, graph::Graph, optimizer)::JuMP.Model
model = Model(optimizer)
model[:instance] = instance
model[:graph] = graph
create_vars!(model)
create_objective_function!(model)
create_shipping_node_constraints!(model)
create_process_node_constraints!(model)
return model
end
function create_vars!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:flow] =
Dict((a, t) => @variable(model, lower_bound = 0) for a in graph.arcs, t = 1:T)
model[:dispose] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.disposal_limit[n.product][t]
) for n in values(graph.plant_shipping_nodes), t = 1:T
)
model[:store] = Dict(
(n, t) =>
@variable(model, lower_bound = 0, upper_bound = n.location.storage_limit)
for n in values(graph.process_nodes), t = 1:T
)
model[:process] = Dict(
(n, t) => @variable(model, lower_bound = 0) for
n in values(graph.process_nodes), t = 1:T
)
model[:open_plant] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:is_open] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:capacity] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity
) for n in values(graph.process_nodes), t = 1:T
)
model[:expansion] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity - n.location.sizes[1].capacity
) for n in values(graph.process_nodes), t = 1:T
)
end
function slope_open(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function slope_fix_oper_cost(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function create_objective_function!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
obj = AffExpr(0.0)
# Process node costs
for n in values(graph.process_nodes), t = 1:T
# Transportation and variable operating costs
for a in n.incoming_arcs
c = n.location.input.transportation_cost[t] * a.values["distance"]
add_to_expression!(obj, c, model[:flow][a, t])
end
# Opening costs
add_to_expression!(
obj,
n.location.sizes[1].opening_cost[t],
model[:open_plant][n, t],
)
# Fixed operating costs (base)
add_to_expression!(
obj,
n.location.sizes[1].fixed_operating_cost[t],
model[:is_open][n, t],
)
# Fixed operating costs (expansion)
add_to_expression!(obj, slope_fix_oper_cost(n.location, t), model[:expansion][n, t])
# Processing costs
add_to_expression!(
obj,
n.location.sizes[1].variable_operating_cost[t],
model[:process][n, t],
)
# Storage costs
add_to_expression!(obj, n.location.storage_cost[t], model[:store][n, t])
# Expansion costs
if t < T
add_to_expression!(
obj,
slope_open(n.location, t) - slope_open(n.location, t + 1),
model[:expansion][n, t],
)
else
add_to_expression!(obj, slope_open(n.location, t), model[:expansion][n, t])
end
end
# Shipping node costs
for n in values(graph.plant_shipping_nodes), t = 1:T
# Disposal costs
add_to_expression!(
obj,
n.location.disposal_cost[n.product][t],
model[:dispose][n, t],
)
end
@objective(model, Min, obj)
end
function create_shipping_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:eq_balance] = OrderedDict()
for t = 1:T
# Collection centers
for n in graph.collection_shipping_nodes
model[:eq_balance][n, t] = @constraint(
model,
sum(model[:flow][a, t] for a in n.outgoing_arcs) == n.location.amount[t]
)
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(
model,
sum(model[:flow][a, t] for a in n.incoming_arcs) ==
sum(model[:flow][a, t] for a in n.outgoing_arcs) + model[:dispose][n, t]
)
end
end
end
function create_process_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
for t = 1:T, n in graph.process_nodes
input_sum = AffExpr(0.0)
for a in n.incoming_arcs
add_to_expression!(input_sum, 1.0, model[:flow][a, t])
end
# Output amount is implied by amount processed
for a in n.outgoing_arcs
@constraint(
model,
model[:flow][a, t] == a.values["weight"] * model[:process][n, t]
)
end
# If plant is closed, capacity is zero
@constraint(
model,
model[:capacity][n, t] <= n.location.sizes[2].capacity * model[:is_open][n, t]
)
# If plant is open, capacity is greater than base
@constraint(
model,
model[:capacity][n, t] >= n.location.sizes[1].capacity * model[:is_open][n, t]
)
# Capacity is linked to expansion
@constraint(
model,
model[:capacity][n, t] <=
n.location.sizes[1].capacity + model[:expansion][n, t]
)
# Can only process up to capacity
@constraint(model, model[:process][n, t] <= model[:capacity][n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(model, model[:capacity][n, t] >= model[:capacity][n, t-1])
@constraint(model, model[:expansion][n, t] >= model[:expansion][n, t-1])
end
# Amount received equals amount processed plus stored
store_in = 0
if t > 1
store_in = model[:store][n, t-1]
end
if t == T
@constraint(model, model[:store][n, t] == 0)
end
@constraint(
model,
input_sum + store_in == model[:store][n, t] + model[:process][n, t]
)
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(
model,
model[:is_open][n, t] == model[:is_open][n, t-1] + model[:open_plant][n, t]
)
else
@constraint(model, model[:is_open][n, t] == model[:open_plant][n, t])
end
# Plant can only be opened during building period
if t model[:instance].building_period
@constraint(model, model[:open_plant][n, t] == 0)
end
end
end

@ -0,0 +1,224 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function get_solution(model::JuMP.Model; marginal_costs = true)
graph, instance = model[:graph], model[:instance]
T = instance.time
output = OrderedDict(
"Plants" => OrderedDict(),
"Products" => OrderedDict(),
"Costs" => OrderedDict(
"Fixed operating (\$)" => zeros(T),
"Variable operating (\$)" => zeros(T),
"Opening (\$)" => zeros(T),
"Transportation (\$)" => zeros(T),
"Disposal (\$)" => zeros(T),
"Expansion (\$)" => zeros(T),
"Storage (\$)" => zeros(T),
"Total (\$)" => zeros(T),
),
"Energy" =>
OrderedDict("Plants (GJ)" => zeros(T), "Transportation (GJ)" => zeros(T)),
"Emissions" => OrderedDict(
"Plants (tonne)" => OrderedDict(),
"Transportation (tonne)" => OrderedDict(),
),
)
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
plant_to_shipping_nodes = OrderedDict()
for p in instance.plants
plant_to_shipping_nodes[p] = []
for a in plant_to_process_node[p].outgoing_arcs
push!(plant_to_shipping_nodes[p], a.dest)
end
end
# Products
if marginal_costs
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any,Any}(
"Marginal cost (\$/tonne)" => [
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for t = 1:T
],
)
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
end
# Plants
for plant in instance.plants
skip_plant = true
process_node = plant_to_process_node[plant]
plant_dict = OrderedDict{Any,Any}(
"Input" => OrderedDict(),
"Output" =>
OrderedDict("Send" => OrderedDict(), "Dispose" => OrderedDict()),
"Input product" => plant.input.name,
"Total input (tonne)" => [0.0 for t = 1:T],
"Total output" => OrderedDict(),
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" =>
[JuMP.value(model[:capacity][process_node, t]) for t = 1:T],
"Opening cost (\$)" => [
JuMP.value(model[:open_plant][process_node, t]) *
plant.sizes[1].opening_cost[t] for t = 1:T
],
"Fixed operating cost (\$)" => [
JuMP.value(model[:is_open][process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(model[:expansion][process_node, t]) *
slope_fix_oper_cost(plant, t) for t = 1:T
],
"Expansion cost (\$)" => [
(
if t == 1
slope_open(plant, t) * JuMP.value(model[:expansion][process_node, t])
else
slope_open(plant, t) * (
JuMP.value(model[:expansion][process_node, t]) -
JuMP.value(model[:expansion][process_node, t-1])
)
end
) for t = 1:T
],
"Process (tonne)" =>
[JuMP.value(model[:process][process_node, t]) for t = 1:T],
"Variable operating cost (\$)" => [
JuMP.value(model[:process][process_node, t]) *
plant.sizes[1].variable_operating_cost[t] for t = 1:T
],
"Storage (tonne)" =>
[JuMP.value(model[:store][process_node, t]) for t = 1:T],
"Storage cost (\$)" => [
JuMP.value(model[:store][process_node, t]) * plant.storage_cost[t]
for t = 1:T
],
)
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
output["Costs"]["Variable operating (\$)"] +=
plant_dict["Variable operating cost (\$)"]
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
output["Costs"]["Storage (\$)"] += plant_dict["Storage cost (\$)"]
# Inputs
for a in process_node.incoming_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict{Any,Any}(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.source.location.latitude,
"Longitude (deg)" => a.source.location.longitude,
"Transportation cost (\$)" =>
a.source.product.transportation_cost .* vals .* a.values["distance"],
"Transportation energy (J)" =>
vals .* a.values["distance"] .* a.source.product.transportation_energy,
"Emissions (tonne)" => OrderedDict(),
)
emissions_dict = output["Emissions"]["Transportation (tonne)"]
for (em_name, em_values) in a.source.product.transportation_emissions
dict["Emissions (tonne)"][em_name] =
em_values .* dict["Amount (tonne)"] .* a.values["distance"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
end
if a.source.location isa CollectionCenter
plant_name = "Origin"
location_name = a.source.location.name
else
plant_name = a.source.location.plant_name
location_name = a.source.location.location_name
end
if plant_name keys(plant_dict["Input"])
plant_dict["Input"][plant_name] = OrderedDict()
end
plant_dict["Input"][plant_name][location_name] = dict
plant_dict["Total input (tonne)"] += vals
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
output["Energy"]["Transportation (GJ)"] +=
dict["Transportation energy (J)"] / 1e9
end
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
plant_dict["Emissions (tonne)"] = OrderedDict()
emissions_dict = output["Emissions"]["Plants (tonne)"]
for (em_name, em_values) in plant.emissions
plant_dict["Emissions (tonne)"][em_name] =
em_values .* plant_dict["Total input (tonne)"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
end
# Outputs
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount = [JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] =
disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] =
[JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
disposal_dict["Cost (\$)"] = [
disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t] for t = 1:T
]
plant_dict["Total output"][product_name] += disposal_amount
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
end
for a in shipping_node.outgoing_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.dest.location.latitude,
"Longitude (deg)" => a.dest.location.longitude,
)
if a.dest.location.plant_name keys(product_dict)
product_dict[a.dest.location.plant_name] = OrderedDict()
end
product_dict[a.dest.location.plant_name][a.dest.location.location_name] =
dict
plant_dict["Total output"][product_name] += vals
end
end
if !skip_plant
if plant.plant_name keys(output["Plants"])
output["Plants"][plant.plant_name] = OrderedDict()
end
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
end
end
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
return output
end

@ -0,0 +1,94 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
default_milp_optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
default_lp_optimizer = optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
function solve(
instance::Instance;
optimizer = nothing,
output = nothing,
marginal_costs = true,
)
milp_optimizer = lp_optimizer = optimizer
if optimizer == nothing
milp_optimizer = default_milp_optimizer
lp_optimizer = default_lp_optimizer
end
@info "Building graph..."
graph = RELOG.build_graph(instance)
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(
" %12d shipping nodes (collection)",
length(graph.collection_shipping_nodes)
)
@info @sprintf(" %12d arcs", length(graph.arcs))
@info "Building optimization model..."
model = RELOG.build_model(instance, graph, milp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model)
if !has_values(model)
@warn "No solution available"
return OrderedDict()
end
if marginal_costs
@info "Re-optimizing with integer variables fixed..."
all_vars = JuMP.all_variables(model)
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
JuMP.set_optimizer(model, lp_optimizer)
for var in all_vars
if JuMP.is_binary(var)
JuMP.unset_binary(var)
JuMP.fix(var, vals[var])
end
end
JuMP.optimize!(model)
end
@info "Extracting solution..."
solution = get_solution(model, marginal_costs = marginal_costs)
if output != nothing
write(solution, output)
end
return solution
end
function solve(filename::AbstractString; heuristic = false, kwargs...)
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
if heuristic && instance.time > 1
@info "Solving single-period version..."
compressed = _compress(instance)
csol = solve(compressed; output = nothing, marginal_costs = false, kwargs...)
@info "Filtering candidate locations..."
selected_pairs = []
for (plant_name, plant_dict) in csol["Plants"]
for (location_name, location_dict) in plant_dict
push!(selected_pairs, (plant_name, location_name))
end
end
filtered_plants = []
for p in instance.plants
if (p.plant_name, p.location_name) in selected_pairs
push!(filtered_plants, p)
end
end
instance.plants = filtered_plants
@info "Solving original version..."
end
sol = solve(instance; kwargs...)
return sol
end

@ -1,315 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plants_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."latitude (deg)" = Float64[]
df."longitude (deg)" = Float64[]
df."capacity (tonne)" = Float64[]
df."amount processed (tonne)" = Float64[]
df."amount received (tonne)" = Float64[]
df."amount in storage (tonne)" = Float64[]
df."utilization factor (%)" = Float64[]
df."energy (GJ)" = Float64[]
df."opening cost (\$)" = Float64[]
df."expansion cost (\$)" = Float64[]
df."fixed operating cost (\$)" = Float64[]
df."variable operating cost (\$)" = Float64[]
df."storage cost (\$)" = Float64[]
df."total cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for year = 1:T
capacity = round(location_dict["Capacity (tonne)"][year], digits = 2)
received = round(location_dict["Total input (tonne)"][year], digits = 2)
processed = round(location_dict["Process (tonne)"][year], digits = 2)
in_storage = round(location_dict["Storage (tonne)"][year], digits = 2)
utilization_factor = round(processed / capacity * 100.0, digits = 2)
energy = round(location_dict["Energy (GJ)"][year], digits = 2)
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
opening_cost = round(location_dict["Opening cost (\$)"][year], digits = 2)
expansion_cost =
round(location_dict["Expansion cost (\$)"][year], digits = 2)
fixed_cost =
round(location_dict["Fixed operating cost (\$)"][year], digits = 2)
var_cost =
round(location_dict["Variable operating cost (\$)"][year], digits = 2)
storage_cost = round(location_dict["Storage cost (\$)"][year], digits = 2)
total_cost = round(
opening_cost + expansion_cost + fixed_cost + var_cost + storage_cost,
digits = 2,
)
push!(
df,
[
plant_name,
location_name,
year,
latitude,
longitude,
capacity,
processed,
received,
in_storage,
utilization_factor,
energy,
opening_cost,
expansion_cost,
fixed_cost,
var_cost,
storage_cost,
total_cost,
],
)
end
end
end
return df
end
function plant_outputs_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."product name" = String[]
df."amount produced (tonne)" = Float64[]
df."amount sent (tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."disposal cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (product_name, amount_produced) in location_dict["Total output"]
send_dict = location_dict["Output"]["Send"]
disposal_dict = location_dict["Output"]["Dispose"]
sent = zeros(T)
if product_name in keys(send_dict)
for (dst_plant_name, dst_plant_dict) in send_dict[product_name]
for (dst_location_name, dst_location_dict) in dst_plant_dict
sent += dst_location_dict["Amount (tonne)"]
end
end
end
sent = round.(sent, digits = 2)
disposal_amount = zeros(T)
disposal_cost = zeros(T)
if product_name in keys(disposal_dict)
disposal_amount += disposal_dict[product_name]["Amount (tonne)"]
disposal_cost += disposal_dict[product_name]["Cost (\$)"]
end
disposal_amount = round.(disposal_amount, digits = 2)
disposal_cost = round.(disposal_cost, digits = 2)
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
product_name,
round(amount_produced[year], digits = 2),
sent[year],
disposal_amount[year],
disposal_cost[year],
],
)
end
end
end
end
return df
end
function plant_emissions_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (emission_name, emission_amount) in location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
emission_name,
round(emission_amount[year], digits = 2),
],
)
end
end
end
end
return df
end
function transportation_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."amount (tonne)" = Float64[]
df."amount-distance (tonne-km)" = Float64[]
df."transportation cost (\$)" = Float64[]
df."transportation energy (GJ)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 2),
round(
src_location_dict["Amount (tonne)"][year],
digits = 2,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 2,
),
round(
src_location_dict["Transportation cost (\$)"][year],
digits = 2,
),
round(
src_location_dict["Transportation energy (J)"][year] /
1e9,
digits = 2,
),
],
)
end
end
end
end
end
return df
end
function transportation_emissions_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."shipped amount (tonne)" = Float64[]
df."shipped amount-distance (tonne-km)" = Float64[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for (emission_name, emission_amount) in
src_location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 2),
round(
src_location_dict["Amount (tonne)"][year],
digits = 2,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 2,
),
emission_name,
round(emission_amount[year], digits = 2),
],
)
end
end
end
end
end
end
return df
end
function write(solution::AbstractDict, filename::AbstractString)
@info "Writing solution: $filename"
open(filename, "w") do file
JSON.print(file, solution, 2)
end
end
write_plants_report(solution, filename) = CSV.write(filename, plants_report(solution))
write_plant_outputs_report(solution, filename) =
CSV.write(filename, plant_outputs_report(solution))
write_plant_emissions_report(solution, filename) =
CSV.write(filename, plant_emissions_report(solution))
write_transportation_report(solution, filename) =
CSV.write(filename, transportation_report(solution))
write_transportation_emissions_report(solution, filename) =
CSV.write(filename, transportation_emissions_report(solution))

@ -0,0 +1,38 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plant_emissions_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (emission_name, emission_amount) in location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
emission_name,
round(emission_amount[year], digits = 2),
],
)
end
end
end
end
return df
end
write_plant_emissions_report(solution, filename) =
CSV.write(filename, plant_emissions_report(solution))

@ -0,0 +1,66 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plant_outputs_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."product name" = String[]
df."amount produced (tonne)" = Float64[]
df."amount sent (tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."disposal cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (product_name, amount_produced) in location_dict["Total output"]
send_dict = location_dict["Output"]["Send"]
disposal_dict = location_dict["Output"]["Dispose"]
sent = zeros(T)
if product_name in keys(send_dict)
for (dst_plant_name, dst_plant_dict) in send_dict[product_name]
for (dst_location_name, dst_location_dict) in dst_plant_dict
sent += dst_location_dict["Amount (tonne)"]
end
end
end
sent = round.(sent, digits = 2)
disposal_amount = zeros(T)
disposal_cost = zeros(T)
if product_name in keys(disposal_dict)
disposal_amount += disposal_dict[product_name]["Amount (tonne)"]
disposal_cost += disposal_dict[product_name]["Cost (\$)"]
end
disposal_amount = round.(disposal_amount, digits = 2)
disposal_cost = round.(disposal_cost, digits = 2)
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
product_name,
round(amount_produced[year], digits = 2),
sent[year],
disposal_amount[year],
disposal_cost[year],
],
)
end
end
end
end
return df
end
write_plant_outputs_report(solution, filename) =
CSV.write(filename, plant_outputs_report(solution))

@ -0,0 +1,79 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plants_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."latitude (deg)" = Float64[]
df."longitude (deg)" = Float64[]
df."capacity (tonne)" = Float64[]
df."amount processed (tonne)" = Float64[]
df."amount received (tonne)" = Float64[]
df."amount in storage (tonne)" = Float64[]
df."utilization factor (%)" = Float64[]
df."energy (GJ)" = Float64[]
df."opening cost (\$)" = Float64[]
df."expansion cost (\$)" = Float64[]
df."fixed operating cost (\$)" = Float64[]
df."variable operating cost (\$)" = Float64[]
df."storage cost (\$)" = Float64[]
df."total cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for year = 1:T
capacity = round(location_dict["Capacity (tonne)"][year], digits = 2)
received = round(location_dict["Total input (tonne)"][year], digits = 2)
processed = round(location_dict["Process (tonne)"][year], digits = 2)
in_storage = round(location_dict["Storage (tonne)"][year], digits = 2)
utilization_factor = round(processed / capacity * 100.0, digits = 2)
energy = round(location_dict["Energy (GJ)"][year], digits = 2)
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
opening_cost = round(location_dict["Opening cost (\$)"][year], digits = 2)
expansion_cost =
round(location_dict["Expansion cost (\$)"][year], digits = 2)
fixed_cost =
round(location_dict["Fixed operating cost (\$)"][year], digits = 2)
var_cost =
round(location_dict["Variable operating cost (\$)"][year], digits = 2)
storage_cost = round(location_dict["Storage cost (\$)"][year], digits = 2)
total_cost = round(
opening_cost + expansion_cost + fixed_cost + var_cost + storage_cost,
digits = 2,
)
push!(
df,
[
plant_name,
location_name,
year,
latitude,
longitude,
capacity,
processed,
received,
in_storage,
utilization_factor,
energy,
opening_cost,
expansion_cost,
fixed_cost,
var_cost,
storage_cost,
total_cost,
],
)
end
end
end
return df
end
write_plants_report(solution, filename) = CSV.write(filename, plants_report(solution))

@ -0,0 +1,75 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function transportation_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."amount (tonne)" = Float64[]
df."amount-distance (tonne-km)" = Float64[]
df."transportation cost (\$)" = Float64[]
df."transportation energy (GJ)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 2),
round(
src_location_dict["Amount (tonne)"][year],
digits = 2,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 2,
),
round(
src_location_dict["Transportation cost (\$)"][year],
digits = 2,
),
round(
src_location_dict["Transportation energy (J)"][year] /
1e9,
digits = 2,
),
],
)
end
end
end
end
end
return df
end
write_transportation_report(solution, filename) =
CSV.write(filename, transportation_report(solution))

@ -0,0 +1,71 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function transportation_emissions_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."shipped amount (tonne)" = Float64[]
df."shipped amount-distance (tonne-km)" = Float64[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for (emission_name, emission_amount) in
src_location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 2),
round(
src_location_dict["Amount (tonne)"][year],
digits = 2,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 2,
),
emission_name,
round(emission_amount[year], digits = 2),
],
)
end
end
end
end
end
end
return df
end
write_transportation_emissions_report(solution, filename) =
CSV.write(filename, transportation_emissions_report(solution))

@ -0,0 +1,13 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function write(solution::AbstractDict, filename::AbstractString)
@info "Writing solution: $filename"
open(filename, "w") do file
JSON.print(file, solution, 2)
end
end

@ -0,0 +1,39 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "build_graph" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1095.62
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end

@ -1,41 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "Graph" begin
@testset "build_graph" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../instances/s1.json")
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1095.62
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end
end

@ -0,0 +1,53 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "compress" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
compressed = RELOG._compress(instance)
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
end

@ -0,0 +1,76 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "parse" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(plants) == 6
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "parse (invalid)" begin
basedir = dirname(@__FILE__)
@test_throws String RELOG.parsefile("$basedir/../fixtures/s1-wrong-length.json")
end

@ -1,126 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "Instance" begin
@testset "load" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../instances/s1.json")
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(plants) == 6
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "validate timeseries" begin
@test_throws String RELOG.parsefile("fixtures/s1-wrong-length.json")
end
@testset "compress" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../instances/s1.json")
compressed = RELOG._compress(instance)
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
end
end

@ -0,0 +1,38 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
@testset "build" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
set_optimizer_attribute(model, "logLevel", 0)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
shipping_node_by_loc_and_prod_names = Dict(
(n.location.location_name, n.product.name) => n for n in graph.plant_shipping_nodes
)
@test length(model[:flow]) == 76
@test length(model[:dispose]) == 16
@test length(model[:open_plant]) == 12
@test length(model[:capacity]) == 12
@test length(model[:expansion]) == 12
l1 = process_node_by_location_name["L1"]
v = model[:capacity][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1000.0
v = model[:expansion][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 750.0
v = model[:dispose][shipping_node_by_loc_and_prod_names["L1", "P2"], 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1.0
end

@ -0,0 +1,61 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
basedir = dirname(@__FILE__)
@testset "solve (exact)" begin
solution_filename_a = tempname()
solution_filename_b = tempname()
solution = RELOG.solve("$basedir/../../instances/s1.json", output = solution_filename_a)
@test isfile(solution_filename_a)
RELOG.write(solution, solution_filename_b)
@test isfile(solution_filename_b)
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
end
@testset "solve (heuristic)" begin
# Should not crash
solution = RELOG.solve("$basedir/../../instances/s1.json", heuristic = true)
end
@testset "solve (infeasible)" begin
json = JSON.parsefile("$basedir/../../instances/s1.json")
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
location_dict["amount (tonne)"] *= 1000
end
RELOG.solve(RELOG.parse(json))
end
@testset "solve (with storage)" begin
basedir = dirname(@__FILE__)
filename = "$basedir/../fixtures/storage.json"
instance = RELOG.parsefile(filename)
@test instance.plants[1].storage_limit == 50.0
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
solution = RELOG.solve(filename)
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
end

@ -1,102 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
@testset "Model" begin
@testset "build" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../instances/s1.json")
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
set_optimizer_attribute(model, "logLevel", 0)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
shipping_node_by_location_and_product_names = Dict(
(n.location.location_name, n.product.name) => n for
n in graph.plant_shipping_nodes
)
@test length(model[:flow]) == 76
@test length(model[:dispose]) == 16
@test length(model[:open_plant]) == 12
@test length(model[:capacity]) == 12
@test length(model[:expansion]) == 12
l1 = process_node_by_location_name["L1"]
v = model[:capacity][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1000.0
v = model[:expansion][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 750.0
v = model[:dispose][shipping_node_by_location_and_product_names["L1", "P2"], 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1.0
# dest = FileFormats.Model(format = FileFormats.FORMAT_LP)
# MOI.copy_to(dest, model)
# MOI.write_to_file(dest, "model.lp")
end
@testset "solve (exact)" begin
solution_filename_a = tempname()
solution_filename_b = tempname()
solution =
RELOG.solve("$(pwd())/../instances/s1.json", output = solution_filename_a)
@test isfile(solution_filename_a)
RELOG.write(solution, solution_filename_b)
@test isfile(solution_filename_b)
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
end
@testset "solve (heuristic)" begin
# Should not crash
solution = RELOG.solve("$(pwd())/../instances/s1.json", heuristic = true)
end
@testset "infeasible solve" begin
json = JSON.parsefile("$(pwd())/../instances/s1.json")
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
location_dict["amount (tonne)"] *= 1000
end
RELOG.solve(RELOG.parse(json))
end
@testset "storage" begin
basedir = dirname(@__FILE__)
filename = "$basedir/fixtures/storage.json"
instance = RELOG.parsefile(filename)
@test instance.plants[1].storage_limit == 50.0
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
solution = RELOG.solve(filename)
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
end
end

@ -4,8 +4,16 @@
using Test using Test
@testset "RELOG" begin @testset "RELOG" begin
include("instance_test.jl") @testset "Instance" begin
include("graph_test.jl") include("instance/compress_test.jl")
include("model_test.jl") include("instance/parse_test.jl")
end
@testset "Graph" begin
include("graph/build_test.jl")
end
@testset "Model" begin
include("model/build_test.jl")
include("model/solve_test.jl")
end
include("reports_test.jl") include("reports_test.jl")
end end

Loading…
Cancel
Save