mirror of
https://github.com/ANL-CEEESA/RELOG.git
synced 2025-12-05 23:38:52 -06:00
Model: Objective function and plant constraints
This commit is contained in:
@@ -3,6 +3,7 @@ module RELOG
|
||||
include("instance/structs.jl")
|
||||
include("instance/parse.jl")
|
||||
include("model/jumpext.jl")
|
||||
include("model/dist.jl")
|
||||
include("model/build.jl")
|
||||
|
||||
end # module RELOG
|
||||
|
||||
@@ -9,22 +9,35 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
|
||||
|
||||
# Transportation edges
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
# Connectivity
|
||||
E = []
|
||||
E_in = Dict(src => [] for src in plants ∪ centers)
|
||||
E_out = Dict(src => [] for src in plants ∪ centers)
|
||||
|
||||
function push_edge!(src, dst, m)
|
||||
@show src.name, dst.name, m.name
|
||||
push!(E, (src, dst, m))
|
||||
push!(E_out[src], (dst, m))
|
||||
push!(E_in[dst], (src, m))
|
||||
end
|
||||
|
||||
for m in products
|
||||
for p1 in plants
|
||||
m ∉ keys(p1.output) || continue
|
||||
m ∈ keys(p1.output) || continue
|
||||
|
||||
# Plant to plant
|
||||
for p2 in plants
|
||||
p1 != p2 || continue
|
||||
m ∉ keys(p2.input_mix) || continue
|
||||
push!(E, (p1, p2, m))
|
||||
push_edge!(p1, p2, m)
|
||||
end
|
||||
|
||||
# Plant to center
|
||||
for c in centers
|
||||
@show m.name, p1.name, c.name, m == c.input
|
||||
m == c.input || continue
|
||||
push!(E, (p1, c, m))
|
||||
push_edge!(p1, c, m)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -34,23 +47,33 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
|
||||
# Center to plant
|
||||
for p in plants
|
||||
m ∈ keys(p.input_mix) || continue
|
||||
push!(E, (c1, p, m))
|
||||
push_edge!(c1, p, m)
|
||||
end
|
||||
|
||||
# Center to center
|
||||
for c2 in centers
|
||||
m == c2.input || continue
|
||||
push!(E, (c1, c2, m))
|
||||
push_edge!(c1, c2, m)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# Distances
|
||||
distances = Dict()
|
||||
for (p1, p2, m) in E
|
||||
d = _calculate_distance(p1.latitude, p1.longitude, p2.latitude, p2.longitude)
|
||||
distances[p1, p2, m] = d
|
||||
@show p1.name, p2.name, m.name, d
|
||||
end
|
||||
|
||||
# Decision variables
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
# Plant p is operational at time t
|
||||
x = _init(model, :x)
|
||||
for p in plants
|
||||
x[p.name, 0] = p.initial_capacity > 0 ? 1 : 0
|
||||
end
|
||||
for p in plants, t in T
|
||||
x[p.name, t] = @variable(model, binary = true)
|
||||
end
|
||||
@@ -58,35 +81,155 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
|
||||
# Amount of product m sent from center/plant u to center/plant v at time T
|
||||
y = _init(model, :y)
|
||||
for (p1, p2, m) in E, t in T
|
||||
y[p1.name, p2.name, m.name, t] = @variable(model, lower_bound=0)
|
||||
y[p1.name, p2.name, m.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
|
||||
# Amount of product m produced by plant/center at time T
|
||||
z_prod = _init(model, :z_prod)
|
||||
for p in plants, m in keys(p.output), t in T
|
||||
z_prod[p.name, m.name, t] = @variable(model, lower_bound=0)
|
||||
z_prod[p.name, m.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
for c in centers, m in c.outputs, t in T
|
||||
z_prod[c.name, m.name, t] = @variable(model, lower_bound=0)
|
||||
z_prod[c.name, m.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
|
||||
# Amount of product m disposed at plant/center p at time T
|
||||
z_disp = _init(model, :z_disp)
|
||||
for p in plants, m in keys(p.output), t in T
|
||||
z_disp[p.name, m.name, t] = @variable(model, lower_bound=0)
|
||||
z_disp[p.name, m.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
for c in centers, m in c.outputs, t in T
|
||||
z_disp[c.name, m.name, t] = @variable(model, lower_bound=0)
|
||||
z_disp[c.name, m.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
|
||||
|
||||
# Total plant input
|
||||
z_input = _init(model, :z_input)
|
||||
for p in plants, t in T
|
||||
z_input[p.name, t] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
|
||||
|
||||
# Objective function
|
||||
# -------------------------------------------------------------------------
|
||||
obj = AffExpr()
|
||||
|
||||
# Transportation cost
|
||||
for (p1, p2, m) in E, t in T
|
||||
obj += distances[p1, p2, m] * y[p1.name, p2.name, m.name, t]
|
||||
end
|
||||
|
||||
# Center: Revenue
|
||||
for c in centers, (p, m) in E_in[c], t in T
|
||||
obj += c.revenue[t] * y[p.name, c.name, m.name, t]
|
||||
end
|
||||
|
||||
# Center: Collection cost
|
||||
for c in centers, (p, m) in E_out[c], t in T
|
||||
obj += c.collection_cost[m][t] * y[c.name, p.name, m.name, t]
|
||||
end
|
||||
|
||||
# Center: Disposal cost
|
||||
for c in centers, m in c.outputs, t in T
|
||||
obj += c.disposal_cost[m][t] * z_disp[c.name, m.name, t]
|
||||
end
|
||||
|
||||
# Center: Operating cost
|
||||
for c in centers, t in T
|
||||
obj += c.operating_cost[t]
|
||||
end
|
||||
|
||||
# Plants: Disposal cost
|
||||
for p in plants, m in keys(p.output), t in T
|
||||
obj += p.disposal_cost[m][t] * z_disp[p.name, m.name, t]
|
||||
end
|
||||
|
||||
# Plants: Opening cost
|
||||
for p in plants, t in T
|
||||
obj += p.capacities[1].opening_cost[t] * (x[p.name, t] - x[p.name, t-1])
|
||||
end
|
||||
|
||||
# Plants: Fixed operating cost
|
||||
for p in plants, t in T
|
||||
obj += p.capacities[1].fix_operating_cost[t] * x[p.name, t]
|
||||
end
|
||||
|
||||
# Plants: Variable operating cost
|
||||
for p in plants, (src, m) in E_in[p], t in T
|
||||
obj += p.capacities[1].var_operating_cost[t] * y[src.name, p.name, m.name, t]
|
||||
end
|
||||
|
||||
@objective(model, Min, obj)
|
||||
|
||||
# Constraints
|
||||
# -------------------------------------------------------------------------
|
||||
|
||||
# Plants: Definition of total plant input
|
||||
eq_z_input = _init(model, :eq_z_input)
|
||||
for p in plants, t in T
|
||||
eq_z_input[p.name, t] = @constraint(
|
||||
model,
|
||||
z_input[p.name, t] ==
|
||||
sum(y[src.name, p.name, m.name, t] for (src, m) in E_in[p])
|
||||
)
|
||||
end
|
||||
|
||||
# Plants: Must meet input mix
|
||||
eq_input_mix = _init(model, :eq_input_mix)
|
||||
for p in plants, m in keys(p.input_mix), t in T
|
||||
eq_input_mix[p.name, m.name, t] = @constraint(
|
||||
model,
|
||||
sum(y[src.name, p.name, m.name, t] for (src, m2) in E_in[p] if m == m2) ==
|
||||
z_input[p.name, t] * p.input_mix[m][t]
|
||||
)
|
||||
end
|
||||
|
||||
# Plants: Calculate amount produced
|
||||
eq_z_prod = _init(model, :eq_z_prod)
|
||||
for p in plants, m in keys(p.output), t in T
|
||||
eq_z_prod[p.name, m.name, t] = @constraint(
|
||||
model,
|
||||
z_prod[p.name, m.name, t] == z_input[p.name, t] * p.output[m][t]
|
||||
)
|
||||
end
|
||||
|
||||
# Plants: Produced material must be sent or disposed
|
||||
eq_balance = _init(model, :eq_balance)
|
||||
for p in plants, m in keys(p.output), t in T
|
||||
eq_balance[p.name, m.name, t] = @constraint(
|
||||
model,
|
||||
z_prod[p.name, m.name, t] ==
|
||||
sum(y[p.name, dst.name, m.name, t] for (dst, m2) in E_out[p] if m == m2) +
|
||||
z_disp[p.name, m.name, t]
|
||||
)
|
||||
end
|
||||
|
||||
# Plants: Capacity limit
|
||||
eq_capacity = _init(model, :eq_capacity)
|
||||
for p in plants, t in T
|
||||
eq_capacity[p.name, t] = @constraint(
|
||||
model,
|
||||
z_input[p.name, t] <= p.capacities[1].size * x[p.name, t]
|
||||
)
|
||||
end
|
||||
|
||||
# Plants: Disposal limit
|
||||
eq_disposal_limit = _init(model, :eq_disposal_limit)
|
||||
for p in plants, m in keys(p.output), t in T
|
||||
isfinite(p.disposal_limit[m][t]) || continue
|
||||
eq_disposal_limit[p.name, m.name, t] = @constraint(
|
||||
model,
|
||||
z_disp[p.name, m.name, t] <= p.disposal_limit[m][t]
|
||||
)
|
||||
end
|
||||
|
||||
# Plants: Plant remains open
|
||||
eq_keep_open = _init(model, :eq_keep_open)
|
||||
for p in plants, t in T
|
||||
eq_keep_open[p.name, t] = @constraint(
|
||||
model,
|
||||
x[p.name, t] >= x[p.name, t-1]
|
||||
)
|
||||
end
|
||||
|
||||
if variable_names
|
||||
_set_names!(model)
|
||||
|
||||
11
src/model/dist.jl
Normal file
11
src/model/dist.jl
Normal file
@@ -0,0 +1,11 @@
|
||||
# RELOG: Reverse Logistics Optimization
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using Geodesy
|
||||
|
||||
function _calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
|
||||
x = LLA(source_lat, source_lon, 0.0)
|
||||
y = LLA(dest_lat, dest_lon, 0.0)
|
||||
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
|
||||
end
|
||||
@@ -14,7 +14,7 @@ function fix(x::Float64, v::Float64; force)
|
||||
return abs(x - v) < 1e-6 || error("Value mismatch: $x != $v")
|
||||
end
|
||||
|
||||
function set_name(x::Float64, n::String)
|
||||
function set_name(x::Number, n::String)
|
||||
# nop
|
||||
end
|
||||
|
||||
@@ -44,4 +44,4 @@ function _set_names!(dict::Dict)
|
||||
set_name(dict[name][idx], "$name[$idx_str]")
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
Reference in New Issue
Block a user