Model: Objective function and plant constraints

feature/composition2
Alinson S. Xavier 2 years ago
parent 0da66b571a
commit d41ff30326
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -4,6 +4,7 @@ authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0" version = "0.1.0"
[deps] [deps]
Geodesy = "0ef565a4-170c-5f04-8de2-149903a85f3d"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6" JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572" JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d" OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"

@ -3,6 +3,7 @@ module RELOG
include("instance/structs.jl") include("instance/structs.jl")
include("instance/parse.jl") include("instance/parse.jl")
include("model/jumpext.jl") include("model/jumpext.jl")
include("model/dist.jl")
include("model/build.jl") include("model/build.jl")
end # module RELOG end # module RELOG

@ -9,22 +9,35 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
# Transportation edges # Transportation edges
# ------------------------------------------------------------------------- # -------------------------------------------------------------------------
# Connectivity
E = [] E = []
E_in = Dict(src => [] for src in plants centers)
E_out = Dict(src => [] for src in plants centers)
function push_edge!(src, dst, m)
@show src.name, dst.name, m.name
push!(E, (src, dst, m))
push!(E_out[src], (dst, m))
push!(E_in[dst], (src, m))
end
for m in products for m in products
for p1 in plants for p1 in plants
m keys(p1.output) || continue m keys(p1.output) || continue
# Plant to plant # Plant to plant
for p2 in plants for p2 in plants
p1 != p2 || continue p1 != p2 || continue
m keys(p2.input_mix) || continue m keys(p2.input_mix) || continue
push!(E, (p1, p2, m)) push_edge!(p1, p2, m)
end end
# Plant to center # Plant to center
for c in centers for c in centers
@show m.name, p1.name, c.name, m == c.input
m == c.input || continue m == c.input || continue
push!(E, (p1, c, m)) push_edge!(p1, c, m)
end end
end end
@ -34,23 +47,33 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
# Center to plant # Center to plant
for p in plants for p in plants
m keys(p.input_mix) || continue m keys(p.input_mix) || continue
push!(E, (c1, p, m)) push_edge!(c1, p, m)
end end
# Center to center # Center to center
for c2 in centers for c2 in centers
m == c2.input || continue m == c2.input || continue
push!(E, (c1, c2, m)) push_edge!(c1, c2, m)
end end
end end
end end
# Distances
distances = Dict()
for (p1, p2, m) in E
d = _calculate_distance(p1.latitude, p1.longitude, p2.latitude, p2.longitude)
distances[p1, p2, m] = d
@show p1.name, p2.name, m.name, d
end
# Decision variables # Decision variables
# ------------------------------------------------------------------------- # -------------------------------------------------------------------------
# Plant p is operational at time t # Plant p is operational at time t
x = _init(model, :x) x = _init(model, :x)
for p in plants
x[p.name, 0] = p.initial_capacity > 0 ? 1 : 0
end
for p in plants, t in T for p in plants, t in T
x[p.name, t] = @variable(model, binary = true) x[p.name, t] = @variable(model, binary = true)
end end
@ -58,35 +81,155 @@ function build_model(instance::Instance; optimizer, variable_names::Bool = false
# Amount of product m sent from center/plant u to center/plant v at time T # Amount of product m sent from center/plant u to center/plant v at time T
y = _init(model, :y) y = _init(model, :y)
for (p1, p2, m) in E, t in T for (p1, p2, m) in E, t in T
y[p1.name, p2.name, m.name, t] = @variable(model, lower_bound=0) y[p1.name, p2.name, m.name, t] = @variable(model, lower_bound = 0)
end end
# Amount of product m produced by plant/center at time T # Amount of product m produced by plant/center at time T
z_prod = _init(model, :z_prod) z_prod = _init(model, :z_prod)
for p in plants, m in keys(p.output), t in T for p in plants, m in keys(p.output), t in T
z_prod[p.name, m.name, t] = @variable(model, lower_bound=0) z_prod[p.name, m.name, t] = @variable(model, lower_bound = 0)
end end
for c in centers, m in c.outputs, t in T for c in centers, m in c.outputs, t in T
z_prod[c.name, m.name, t] = @variable(model, lower_bound=0) z_prod[c.name, m.name, t] = @variable(model, lower_bound = 0)
end end
# Amount of product m disposed at plant/center p at time T # Amount of product m disposed at plant/center p at time T
z_disp = _init(model, :z_disp) z_disp = _init(model, :z_disp)
for p in plants, m in keys(p.output), t in T for p in plants, m in keys(p.output), t in T
z_disp[p.name, m.name, t] = @variable(model, lower_bound=0) z_disp[p.name, m.name, t] = @variable(model, lower_bound = 0)
end end
for c in centers, m in c.outputs, t in T for c in centers, m in c.outputs, t in T
z_disp[c.name, m.name, t] = @variable(model, lower_bound=0) z_disp[c.name, m.name, t] = @variable(model, lower_bound = 0)
end
# Total plant input
z_input = _init(model, :z_input)
for p in plants, t in T
z_input[p.name, t] = @variable(model, lower_bound = 0)
end end
# Objective function # Objective function
# ------------------------------------------------------------------------- # -------------------------------------------------------------------------
obj = AffExpr()
# Transportation cost
for (p1, p2, m) in E, t in T
obj += distances[p1, p2, m] * y[p1.name, p2.name, m.name, t]
end
# Center: Revenue
for c in centers, (p, m) in E_in[c], t in T
obj += c.revenue[t] * y[p.name, c.name, m.name, t]
end
# Center: Collection cost
for c in centers, (p, m) in E_out[c], t in T
obj += c.collection_cost[m][t] * y[c.name, p.name, m.name, t]
end
# Center: Disposal cost
for c in centers, m in c.outputs, t in T
obj += c.disposal_cost[m][t] * z_disp[c.name, m.name, t]
end
# Center: Operating cost
for c in centers, t in T
obj += c.operating_cost[t]
end
# Plants: Disposal cost
for p in plants, m in keys(p.output), t in T
obj += p.disposal_cost[m][t] * z_disp[p.name, m.name, t]
end
# Plants: Opening cost
for p in plants, t in T
obj += p.capacities[1].opening_cost[t] * (x[p.name, t] - x[p.name, t-1])
end
# Plants: Fixed operating cost
for p in plants, t in T
obj += p.capacities[1].fix_operating_cost[t] * x[p.name, t]
end
# Plants: Variable operating cost
for p in plants, (src, m) in E_in[p], t in T
obj += p.capacities[1].var_operating_cost[t] * y[src.name, p.name, m.name, t]
end
@objective(model, Min, obj)
# Constraints # Constraints
# ------------------------------------------------------------------------- # -------------------------------------------------------------------------
# Plants: Definition of total plant input
eq_z_input = _init(model, :eq_z_input)
for p in plants, t in T
eq_z_input[p.name, t] = @constraint(
model,
z_input[p.name, t] ==
sum(y[src.name, p.name, m.name, t] for (src, m) in E_in[p])
)
end
# Plants: Must meet input mix
eq_input_mix = _init(model, :eq_input_mix)
for p in plants, m in keys(p.input_mix), t in T
eq_input_mix[p.name, m.name, t] = @constraint(
model,
sum(y[src.name, p.name, m.name, t] for (src, m2) in E_in[p] if m == m2) ==
z_input[p.name, t] * p.input_mix[m][t]
)
end
# Plants: Calculate amount produced
eq_z_prod = _init(model, :eq_z_prod)
for p in plants, m in keys(p.output), t in T
eq_z_prod[p.name, m.name, t] = @constraint(
model,
z_prod[p.name, m.name, t] == z_input[p.name, t] * p.output[m][t]
)
end
# Plants: Produced material must be sent or disposed
eq_balance = _init(model, :eq_balance)
for p in plants, m in keys(p.output), t in T
eq_balance[p.name, m.name, t] = @constraint(
model,
z_prod[p.name, m.name, t] ==
sum(y[p.name, dst.name, m.name, t] for (dst, m2) in E_out[p] if m == m2) +
z_disp[p.name, m.name, t]
)
end
# Plants: Capacity limit
eq_capacity = _init(model, :eq_capacity)
for p in plants, t in T
eq_capacity[p.name, t] = @constraint(
model,
z_input[p.name, t] <= p.capacities[1].size * x[p.name, t]
)
end
# Plants: Disposal limit
eq_disposal_limit = _init(model, :eq_disposal_limit)
for p in plants, m in keys(p.output), t in T
isfinite(p.disposal_limit[m][t]) || continue
eq_disposal_limit[p.name, m.name, t] = @constraint(
model,
z_disp[p.name, m.name, t] <= p.disposal_limit[m][t]
)
end
# Plants: Plant remains open
eq_keep_open = _init(model, :eq_keep_open)
for p in plants, t in T
eq_keep_open[p.name, t] = @constraint(
model,
x[p.name, t] >= x[p.name, t-1]
)
end
if variable_names if variable_names
_set_names!(model) _set_names!(model)

@ -0,0 +1,11 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
function _calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
end

@ -14,7 +14,7 @@ function fix(x::Float64, v::Float64; force)
return abs(x - v) < 1e-6 || error("Value mismatch: $x != $v") return abs(x - v) < 1e-6 || error("Value mismatch: $x != $v")
end end
function set_name(x::Float64, n::String) function set_name(x::Number, n::String)
# nop # nop
end end

@ -68,32 +68,32 @@
} }
}, },
"C2": { "C2": {
"latitude (deg)": 41.881, "latitude (deg)": 42.881,
"longitude (deg)": -87.623, "longitude (deg)": -87.623,
"input": null, "input": null,
"outputs": ["P4"], "outputs": ["P1"],
"variable output (tonne/tonne)": { "variable output (tonne/tonne)": {
"P4": 0 "P1": 0
}, },
"fixed output (tonne)": { "fixed output (tonne)": {
"P4": [50, 60, 70, 80] "P1": [50, 60, 70, 80]
}, },
"revenue ($/tonne)": null, "revenue ($/tonne)": null,
"collection cost ($/tonne)": { "collection cost ($/tonne)": {
"P4": 0.25 "P1": 0.25
}, },
"operating cost ($)": [150.0, 150.0, 150.0, 150.0], "operating cost ($)": [150.0, 150.0, 150.0, 150.0],
"disposal limit (tonne)": { "disposal limit (tonne)": {
"P4": null "P1": null
}, },
"disposal cost ($/tonne)": { "disposal cost ($/tonne)": {
"P4": 0 "P1": 0
} }
}, },
"C3": { "C3": {
"latitude (deg)": 41.881, "latitude (deg)": 43.881,
"longitude (deg)": -87.623, "longitude (deg)": -87.623,
"input": "P1", "input": "P4",
"outputs": [], "outputs": [],
"variable output (tonne/tonne)": {}, "variable output (tonne/tonne)": {},
"constant output (tonne)": {}, "constant output (tonne)": {},
@ -106,7 +106,7 @@
}, },
"plants": { "plants": {
"L1": { "L1": {
"latitude (deg)": 41.881, "latitude (deg)": 44.881,
"longitude (deg)": -87.623, "longitude (deg)": -87.623,
"input mix (%)": { "input mix (%)": {
"P1": 95.3, "P1": 95.3,
@ -138,7 +138,7 @@
"capacities": [ "capacities": [
{ {
"size (tonne)": 100, "size (tonne)": 100,
"opening cost ($)": 500, "opening cost ($)": [300, 400, 450, 475],
"fixed operating cost ($)": 300, "fixed operating cost ($)": 300,
"variable operating cost ($/tonne)": 5.0 "variable operating cost ($/tonne)": 5.0
}, },
@ -149,7 +149,7 @@
"variable operating cost ($/tonne)": 5.0 "variable operating cost ($/tonne)": 5.0
} }
], ],
"initial capacity (tonne)": 150 "initial capacity (tonne)": 0
} }
} }
} }

@ -6,6 +6,7 @@ using JuliaFormatter
include("instance/parse_test.jl") include("instance/parse_test.jl")
include("model/build_test.jl") include("model/build_test.jl")
include("model/dist_test.jl")
basedir = dirname(@__FILE__) basedir = dirname(@__FILE__)
@ -18,6 +19,7 @@ function runtests()
instance_parse_test_1() instance_parse_test_1()
instance_parse_test_2() instance_parse_test_2()
model_build_test() model_build_test()
model_dist_test()
end end
end end

@ -45,7 +45,7 @@ function instance_parse_test_1()
# Plants # Plants
@test length(instance.plants) == 1 @test length(instance.plants) == 1
l1 = instance.plants[1] l1 = instance.plants[1]
@test l1.latitude == 41.881 @test l1.latitude == 44.881
@test l1.longitude == -87.623 @test l1.longitude == -87.623
@test l1.input_mix == @test l1.input_mix ==
Dict(p1 => [0.953, 0.953, 0.953, 0.953], p2 => [0.047, 0.047, 0.047, 0.047]) Dict(p1 => [0.953, 0.953, 0.953, 0.953], p2 => [0.047, 0.047, 0.047, 0.047])
@ -56,11 +56,11 @@ function instance_parse_test_1()
@test l1.disposal_cost == Dict(p3 => [0, 0, 0, 0], p4 => [0.86, 0.86, 0.86, 0.86]) @test l1.disposal_cost == Dict(p3 => [0, 0, 0, 0], p4 => [0.86, 0.86, 0.86, 0.86])
@test l1.disposal_limit == @test l1.disposal_limit ==
Dict(p3 => [Inf, Inf, Inf, Inf], p4 => [1000.0, 1000.0, 1000.0, 1000.0]) Dict(p3 => [Inf, Inf, Inf, Inf], p4 => [1000.0, 1000.0, 1000.0, 1000.0])
@test l1.initial_capacity == 150 @test l1.initial_capacity == 0
@test length(l1.capacities) == 2 @test length(l1.capacities) == 2
c1 = l1.capacities[1] c1 = l1.capacities[1]
@test c1.size == 100 @test c1.size == 100
@test c1.opening_cost == [500, 500, 500, 500] @test c1.opening_cost == [300, 400, 450, 475]
@test c1.fix_operating_cost == [300, 300, 300, 300] @test c1.fix_operating_cost == [300, 300, 300, 300]
@test c1.var_operating_cost == [5, 5, 5, 5] @test c1.var_operating_cost == [5, 5, 5, 5]
c2 = l1.capacities[2] c2 = l1.capacities[2]

@ -5,6 +5,79 @@ using JuMP
function model_build_test() function model_build_test()
instance = RELOG.parsefile(fixture("simple.json")) instance = RELOG.parsefile(fixture("simple.json"))
model = RELOG.build_model(instance, optimizer=HiGHS.Optimizer, variable_names=true) model = RELOG.build_model(instance, optimizer = HiGHS.Optimizer, variable_names = true)
print(model) y = model[:y]
z_disp = model[:z_disp]
z_input = model[:z_input]
x = model[:x]
obj = objective_function(model)
# print(model)
@test obj.terms[y["L1", "C3", "P4", 1]] == (
111.118 + # transportation
12.0 # revenue
)
@test obj.terms[y["C1", "L1", "P2", 4]] == (
333.262 + # transportation
0.25 + # center collection cost
5.0 # plant operating cost
)
@test obj.terms[z_disp["C1", "P2", 1]] == 0.23
@test obj.constant == (
150 * 4 * 3 # center operating cost
)
@test obj.terms[z_disp["L1", "P4", 2]] == 0.86
@test obj.terms[x["L1", 1]] == (
-100.0 + # opening cost
300 # fixed operating cost
)
@test obj.terms[x["L1", 2]] == (
-50.0 + # opening cost
300 # fixed operating cost
)
@test obj.terms[x["L1", 3]] == (
-25.0 + # opening cost
300 # fixed operating cost
)
@test obj.terms[x["L1", 4]] == (
475.0 + # opening cost
300 # fixed operating cost
)
# Plants: Definition of total plant input
@test repr(model[:eq_z_input]["L1", 1]) ==
"eq_z_input[L1,1] : -y[C2,L1,P1,1] - y[C1,L1,P2,1] + z_input[L1,1] = 0"
# Plants: Must meet input mix
@test repr(model[:eq_input_mix]["L1", "P1", 1]) ==
"eq_input_mix[L1,P1,1] : y[C2,L1,P1,1] - 0.953 z_input[L1,1] = 0"
@test repr(model[:eq_input_mix]["L1", "P2", 1]) ==
"eq_input_mix[L1,P2,1] : y[C1,L1,P2,1] - 0.047 z_input[L1,1] = 0"
# Plants: Calculate amount produced
@test repr(model[:eq_z_prod]["L1", "P3", 1]) ==
"eq_z_prod[L1,P3,1] : z_prod[L1,P3,1] - 0.25 z_input[L1,1] = 0"
@test repr(model[:eq_z_prod]["L1", "P4", 1]) ==
"eq_z_prod[L1,P4,1] : z_prod[L1,P4,1] - 0.12 z_input[L1,1] = 0"
# Plants: Produced material must be sent or disposed
@test repr(model[:eq_balance]["L1", "P3", 1]) ==
"eq_balance[L1,P3,1] : z_prod[L1,P3,1] - z_disp[L1,P3,1] = 0"
@test repr(model[:eq_balance]["L1", "P4", 1]) ==
"eq_balance[L1,P4,1] : -y[L1,C3,P4,1] + z_prod[L1,P4,1] - z_disp[L1,P4,1] = 0"
# Plants: Capacity limit
@test repr(model[:eq_capacity]["L1", 1]) ==
"eq_capacity[L1,1] : -100 x[L1,1] + z_input[L1,1] ≤ 0"
# Plants: Disposal limit
@test repr(model[:eq_disposal_limit]["L1", "P4", 1]) ==
"eq_disposal_limit[L1,P4,1] : z_disp[L1,P4,1] ≤ 1000"
@test ("L1", "P3", 1) keys(model[:eq_disposal_limit])
# Plants: Plant remains open
@test repr(model[:eq_keep_open]["L1", 4]) ==
"eq_keep_open[L1,4] : -x[L1,3] + x[L1,4] ≥ 0"
@test repr(model[:eq_keep_open]["L1", 1]) == "eq_keep_open[L1,1] : x[L1,1] ≥ 0"
end end

@ -0,0 +1,10 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
function model_dist_test()
# Euclidean distance between Chicago and Indianapolis
@test RELOG._calculate_distance(41.866, -87.656, 39.764, -86.148) == 265.818
end
Loading…
Cancel
Save