23 Commits

Author SHA1 Message Date
7bce105428 Fix formatting 2023-02-15 13:47:00 -06:00
1aa01b7b2b Merge branch 'master' into relog-web 2023-02-15 13:27:47 -06:00
e86ae0f818 Add RELOG.version() 2023-02-15 13:22:47 -06:00
22d73c9ded Move tests to a separate package; update GitHub CI and docs 2023-02-15 12:32:29 -06:00
a8e4491ea3 Merge branch 'master' into feature/collection-disposal 2023-02-15 11:01:10 -06:00
50d53f628f Reformat source code 2023-01-24 10:31:40 -06:00
79748e3c13 Dist: Drop NaN in training dataset 2023-01-24 10:27:41 -06:00
d1f6796c96 Update CHANGELOG.md 2022-12-16 15:33:16 -06:00
51ff8eb130 Restrict NearestNeighbors version; remove debug statement 2022-12-15 11:03:44 -06:00
9191474df8 Bump version to 0.6 2022-12-15 10:36:44 -06:00
841fbf16fb Make distance metric configurable; fix building period bug 2022-12-15 10:26:10 -06:00
48bd3c403f Switch from Euclidean to approximate driving distance 2022-12-15 09:49:38 -06:00
23b3b33146 Update README.md 2022-10-28 14:05:53 -05:00
86dee7558b Replace Cbc/Clp by HiGHS 2022-09-08 12:14:49 -05:00
d84b74a8a7 relog-web: Make time limit configurable 2022-09-08 11:35:11 -05:00
bae39a4ff4 Merge tag 'v0.5.2' into feature/gui
[Diff since v0.5.1](https://github.com/ANL-CEEESA/RELOG/compare/v0.5.1...v0.5.2)
2022-08-26 14:34:17 -05:00
da158eb961 Update CHANGELOG 2022-08-26 13:26:15 -05:00
e7eec937cb Update README.md 2022-08-26 13:21:42 -05:00
19bec961bd GH Actions: Update Julia versions 2022-08-26 13:12:20 -05:00
8f52c04702 Fix broken image link 2022-08-26 13:08:22 -05:00
19a34fb5d2 Update dependencies; switch to Documenter.jl 2022-08-26 13:04:47 -05:00
a03b9169fd Allow product disposal at collection centers 2021-10-15 09:11:41 -05:00
ee58af73f0 Update sysimage and build scripts 2021-10-15 08:14:04 -05:00
65 changed files with 1341 additions and 887 deletions

View File

@@ -14,10 +14,10 @@ jobs:
shell: julia --color=yes {0}
run: |
using Pkg
Pkg.add(PackageSpec(name="JuliaFormatter", version="0.14.4"))
Pkg.add(PackageSpec(name="JuliaFormatter", version="1"))
using JuliaFormatter
format("src", verbose=true)
format("test", verbose=true)
format("test/src", verbose=true)
out = String(read(Cmd(`git diff`)))
if isempty(out)
exit(0)

View File

@@ -10,7 +10,7 @@ jobs:
runs-on: ${{ matrix.os }}
strategy:
matrix:
version: ['1.3', '1.4', '1.5', '1.6']
version: ['1.6', '1.7', '1.8']
os:
- ubuntu-latest
arch:
@@ -21,5 +21,15 @@ jobs:
with:
version: ${{ matrix.version }}
arch: ${{ matrix.arch }}
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-runtest@v1
- name: Run tests
shell: julia --color=yes --project=test {0}
run: |
using Pkg
Pkg.develop(path=".")
Pkg.update()
using RELOGT
try
runtests()
catch
exit(1)
end

View File

@@ -11,39 +11,50 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [0.6.0] -- 2022-12-15
### Added
- Allow RELOG to calculate approximate driving distances, instead of just straight-line distances between points.
### Fixed
- Fix bug that caused building period parameter to be ignored
## [0.5.2] -- 2022-08-26
### Changed
- Update to JuMP 1.x
## [0.5.1] -- 2021-07-23
## Added
### Added
- Allow user to specify locations as unique identifiers, instead of latitude and longitude (e.g. `us-state:IL` or `2018-us-county:17043`)
- Add what-if scenarios.
- Add products report.
## [0.5.0] -- 2021-01-06
## Added
### Added
- Allow plants to store input material for processing in later years
## [0.4.0] -- 2020-09-18
## Added
### Added
- Generate simplified solution reports (CSV)
## [0.3.3] -- 2020-10-13
## Added
### Added
- Add option to write solution to JSON file in RELOG.solve
- Improve error message when instance is infeasible
- Make output file more readable
## [0.3.2] -- 2020-10-07
## Added
### Added
- Add "building period" parameter
## [0.3.1] -- 2020-07-17
## Fixed
### Fixed
- Fix expansion cost breakdown
## [0.3.0] -- 2020-06-25
## Added
### Added
- Track emissions and energy (transportation and plants)
## Changed
### Changed
- Minor changes to input file format:
- Make all dictionary keys lowercase
- Rename "outputs (tonne)" to "outputs (tonne/tonne)"

View File

@@ -1,5 +1,7 @@
FROM julia:1.7-buster
ENV RELOG_TIME_LIMIT_SEC=3600
# Install Node.js & zip
RUN apt-get update -yq && \
apt-get -yq install curl gnupg ca-certificates && \
@@ -24,4 +26,4 @@ RUN julia --project=/app -e 'using Pkg; Pkg.precompile()'
RUN cd /app/relog-web && npm run build
WORKDIR /app
CMD julia --project=/app -e 'import RELOG; RELOG.web("0.0.0.0")'
CMD julia --project=/app -e 'import RELOG; RELOG.web("0.0.0.0")'

View File

@@ -1,32 +1,31 @@
JULIA := julia --color=yes --project=@.
SRC_FILES := $(wildcard src/*.jl test/*.jl)
VERSION := 0.5
all: docs test
build/sysimage.so: src/sysimage.jl Project.toml Manifest.toml
mkdir -p build
$(JULIA) src/sysimage.jl
build/test.log: $(SRC_FILES) build/sysimage.so
cd test; $(JULIA) --sysimage ../build/sysimage.so runtests.jl
VERSION := 0.6
PKG := ghcr.io/anl-ceeesa/relog-web
clean:
rm -rf build/*
rm -rfv build Manifest.toml test/Manifest.toml deps/formatter/build deps/formatter/Manifest.toml
docs:
mkdocs build -d ../docs/$(VERSION)/
cd docs; julia --project=. make.jl; cd ..
rsync -avP --delete-after docs/build/ ../docs/$(VERSION)/
docker-build:
docker build --tag relog:0.6 .
docker build --tag $(PKG):$(VERSION) .
docker build --tag $(PKG):latest .
docker-push:
docker push $(PKG):$(VERSION)
docker push $(PKG):latest
docker-run:
docker run -it --rm --name relog --volume $(PWD)/jobs:/app/jobs --publish 8000:8080 $(PKG):$(VERSION)
format:
julia -e 'using JuliaFormatter; format(["src", "test"], verbose=true);'
cd deps/formatter; ../../juliaw format.jl
test: build/test.log
test: test/Manifest.toml
./juliaw test/runtests.jl
test-watch:
bash -c "while true; do make test --quiet; sleep 1; done"
.PHONY: docs test
test/Manifest.toml: test/Project.toml
julia --project=test -e "using Pkg; Pkg.instantiate()"
.PHONY: docs test format

View File

@@ -1,13 +1,11 @@
name = "RELOG"
uuid = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
authors = ["Alinson S Xavier <axavier@anl.gov>"]
version = "0.5.1"
version = "0.6.0"
[deps]
CRC = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
@@ -15,13 +13,14 @@ Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
Geodesy = "0ef565a4-170c-5f04-8de2-149903a85f3d"
HTTP = "cd3eb016-35fb-5094-929b-558a96fad6f3"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JSONSchema = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
NearestNeighbors = "b8a86587-4115-5ab1-83bc-aa920d37bbce"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Pkg = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
@@ -33,21 +32,19 @@ ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
[compat]
CRC = "4"
CSV = "0.7"
Cbc = "0.6"
Clp = "0.8"
DataFrames = "0.21"
DataStructures = "0.17"
CSV = "0.10"
DataFrames = "1"
DataStructures = "0.18"
GZip = "0.5"
Geodesy = "0.5"
Geodesy = "1"
HTTP = "0.9"
JSON = "0.21"
JSONSchema = "0.3"
JuMP = "0.21"
MathOptInterface = "0.9"
OrderedCollections = "1.4"
PackageCompiler = "1"
ProgressBars = "0.6"
Shapefile = "0.7"
ZipFile = "0.9"
JSONSchema = "1"
JuMP = "1"
MathOptInterface = "1"
NearestNeighbors = "0.4"
OrderedCollections = "1"
ProgressBars = "1"
Shapefile = "0.8"
ZipFile = "0.10"
julia = "1"

View File

@@ -13,22 +13,24 @@
**RELOG** is a supply chain optimization package focusing on reverse logistics and reverse manufacturing. For example, the package can be used to determine where to build recycling plants, what sizes should they have and which customers should be served by which plants. The package supports customized reverse logistics pipelines, with multiple types of plants, multiple types of product and multiple time periods.
<img src="https://anl-ceeesa.github.io/RELOG/0.5/images/ex_transportation.png" width="1000px"/>
<img src="https://anl-ceeesa.github.io/RELOG/0.6/assets/ex_transportation.png" width="1000px"/>
### Documentation
- [Usage](https://anl-ceeesa.github.io/RELOG/0.5/usage)
- [Input and Output Data Formats](https://anl-ceeesa.github.io/RELOG/0.5/format)
- [Simplified Solution Reports](https://anl-ceeesa.github.io/RELOG/0.5/reports)
- [Optimization Model](https://anl-ceeesa.github.io/RELOG/0.5/model)
* [Usage](https://anl-ceeesa.github.io/RELOG/0.6/usage)
* [Input and Output Data Formats](https://anl-ceeesa.github.io/RELOG/0.6/format)
* [Simplified Solution Reports](https://anl-ceeesa.github.io/RELOG/0.6/reports)
* [Optimization Model](https://anl-ceeesa.github.io/RELOG/0.6/model)
### Authors
- **Alinson S. Xavier** <<axavier@anl.gov>>
- **Nwike Iloeje** <<ciloeje@anl.gov>>
- **John Atkins**
- **Kyle Sun**
- **Audrey Gallier**
* **Alinson S. Xavier** <<axavier@anl.gov>>
* **Nwike Iloeje** <<ciloeje@anl.gov>>
* **John Atkins**
* **Kyle Sun**
* **Audrey Gallier**
### License

4
docs/Project.toml Normal file
View File

@@ -0,0 +1,4 @@
[deps]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
RELOG = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"

19
docs/make.jl Normal file
View File

@@ -0,0 +1,19 @@
using Documenter, RELOG
function make()
makedocs(
sitename="RELOG",
pages=[
"Home" => "index.md",
"usage.md",
"format.md",
"reports.md",
"model.md",
],
format = Documenter.HTML(
assets=["assets/custom.css"],
)
)
end
make()

View File

@@ -0,0 +1,36 @@
@media screen and (min-width: 1056px) {
#documenter .docs-main {
max-width: 65rem !important;
}
}
tbody, thead, pre {
border: 1px solid rgba(0, 0, 0, 0.25);
}
table td, th {
padding: 8px;
}
table p {
margin-bottom: 0;
}
table td code {
white-space: nowrap;
}
table tr,
table th {
border-bottom: 1px solid rgba(0, 0, 0, 0.1);
}
table tr:last-child {
border-bottom: 0;
}
code {
background-color: transparent;
color: rgb(232, 62, 140);
}

View File

Before

Width:  |  Height:  |  Size: 52 KiB

After

Width:  |  Height:  |  Size: 52 KiB

View File

Before

Width:  |  Height:  |  Size: 37 KiB

After

Width:  |  Height:  |  Size: 37 KiB

View File

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 31 KiB

View File

Before

Width:  |  Height:  |  Size: 91 KiB

After

Width:  |  Height:  |  Size: 91 KiB

View File

Before

Width:  |  Height:  |  Size: 586 KiB

After

Width:  |  Height:  |  Size: 586 KiB

View File

Before

Width:  |  Height:  |  Size: 29 KiB

After

Width:  |  Height:  |  Size: 29 KiB

View File

Before

Width:  |  Height:  |  Size: 32 KiB

After

Width:  |  Height:  |  Size: 32 KiB

View File

@@ -11,9 +11,10 @@ RELOG accepts as input a JSON file with three sections: `parameters`, `products`
The **parameters** section describes details about the simulation itself.
| Key | Description
|:--------------------------|---------------|
|:--------------------------|:---------------|
|`time horizon (years)` | Number of years in the simulation.
|`building period (years)` | List of years in which we are allowed to open new plants. For example, if this parameter is set to `[1,2,3]`, we can only open plants during the first three years. By default, this equals `[1]`; that is, plants can only be opened during the first year. |
|`distance metric` | Metric used to compute distances between pairs of locations. Valid options are: `"Euclidean"`, for the straight-line distance between points; or `"driving"` for an approximated driving distance. If not specified, defaults to `"Euclidean"`.
#### Example
@@ -21,7 +22,8 @@ The **parameters** section describes details about the simulation itself.
{
"parameters": {
"time horizon (years)": 2,
"building period (years)": [1]
"building period (years)": [1],
"distance metric": "driving",
}
}
```
@@ -31,16 +33,18 @@ The **parameters** section describes details about the simulation itself.
The **products** section describes all products and subproducts in the simulation. The field `instance["Products"]` is a dictionary mapping the name of the product to a dictionary which describes its characteristics. Each product description contains the following keys:
| Key | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
|`transportation cost ($/km/tonne)` | The cost to transport this product. Must be a time series.
|`transportation energy (J/km/tonne)` | The energy required to transport this product. Must be a time series. Optional.
|`transportation emissions (tonne/km/tonne)` | A dictionary mapping the name of each greenhouse gas, produced to transport one tonne of this product along one kilometer, to the amount of gas produced (in tonnes). Must be a time series. Optional.
|`initial amounts` | A dictionary mapping the name of each location to its description (see below). If this product is not initially available, this key may be omitted. Must be a time series.
| `disposal limit (tonne)` | Total amount of product that can be disposed of across all collection centers. If omitted, all product must be processed. This parameter has no effect on product disposal at plants.
| `disposal cost ($/tonne)` | Cost of disposing one tonne of this product at a collection center. If omitted, defaults to zero. This parameter has no effect on product disposal costs at plants.
Each product may have some amount available at the beginning of each time period. In this case, the key `initial amounts` maps to a dictionary with the following keys:
| Key | Description
|:------------------------|---------------|
|:------------------------|:---------------|
| `latitude (deg)` | The latitude of the location.
| `longitude (deg)` | The longitude of the location.
| `amount (tonne)` | The amount of the product initially available at the location. Must be a time series.
@@ -73,7 +77,9 @@ Each product may have some amount available at the beginning of each time period
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.050],
"CH4": [0.003, 0.002]
}
},
"disposal cost ($/tonne)": [-10.0, -12.0],
"disposal limit (tonne)": [1.0, 1.0],
},
"P2": {
"transportation cost ($/km/tonne)": [0.022, 0.020]
@@ -93,7 +99,7 @@ Each product may have some amount available at the beginning of each time period
The **plants** section describes the available types of reverse manufacturing plants, their potential locations and associated costs, as well as their inputs and outputs. The field `instance["Plants"]` is a dictionary mapping the name of the plant to a dictionary with the following keys:
| Key | Description
|:------------------------|---------------|
|:------------------------|:---------------|
| `input` | The name of the product that this plant takes as input. Only one input is accepted per plant.
| `outputs (tonne/tonne)` | A dictionary specifying how many tonnes of each product is produced for each tonnes of input. For example, if the plant outputs 0.5 tonnes of P2 and 0.25 tonnes of P3 for each tonnes of P1 provided, then this entry should be `{"P2": 0.5, "P3": 0.25}`. If the plant does not output anything, this key may be omitted.
|`energy (GJ/tonne)` | The energy required to process 1 tonne of the input. Must be a time series. Optional.
@@ -113,14 +119,14 @@ Each type of plant is associated with a set of potential locations where it can
The `storage` dictionary should contain the following keys:
| Key | Description
|:------------------------|---------------|
|:------------------------|:---------------|
| `cost ($/tonne)` | The cost to store a tonne of input product for one time period. Must be a time series.
| `limit (tonne)` | The maximum amount of input product this plant can have in storage at any given time.
The keys in the `disposal` dictionary should be the names of the products. The values are dictionaries with the following keys:
| Key | Description
|:------------------------|---------------|
|:------------------------|:---------------|
| `cost ($/tonne)` | The cost to dispose of the product. Must be a time series.
| `limit (tonne)` | The maximum amount that can be disposed of. If an unlimited amount can be disposed, this key may be omitted. Must be a time series.
@@ -128,7 +134,7 @@ The keys in the `disposal` dictionary should be the names of the products. The v
The keys in the `capacities (tonne)` dictionary should be the amounts (in tonnes). The values are dictionaries with the following keys:
| Key | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
| `opening cost ($)` | The cost to open a plant of this size.
| `fixed operating cost ($)` | The cost to keep the plant open, even if the plant doesn't process anything. Must be a time series.
| `variable operating cost ($/tonne)` | The cost that the plant incurs to process each tonne of input. Must be a time series.
@@ -210,7 +216,7 @@ is is possible to write:
Location names follow the format `db:id`, where `db` is the name of the database and `id` is the identifier for a specific location. RELOG currently includes the following databases:
Database | Description | Examples
---------|-------------|----------
:--------|:------------|:---------
`us-state`| List of states of the United States. | `us-state:IL` (State of Illinois)
`2018-us-county` | List of United States counties, as of 2018. IDs are 5-digit FIPS codes. | `2018-us-county:17043` (DuPage county in Illinois)
@@ -220,6 +226,7 @@ Database | Description | Examples
* Plants can be expanded at any time, even long after they are open.
* All material available at the beginning of a time period must be entirely processed by the end of that time period. It is not possible to store unprocessed materials from one time period to the next.
* Up to two plant sizes are currently supported. Variable operating costs must be the same for all plant sizes.
* Accurate driving distances are only available for the continental United States.
## Output Data Format (JSON)

View File

@@ -1,25 +1,29 @@
# RELOG: Reverse Logistics Optimization
**RELOG** is an open-source supply chain optimization package focusing on reverse logistics and reverse manufacturing. The package uses Mixed-Integer Linear Programming to determine where to build recycling plants, what size should these plants have and which customers should be served by which plants. The package supports custom reverse logistics pipelines, with multiple types of plants, multiple types of product and multiple time periods.
<img src="images/ex_transportation.png" width="1000px"/>
```@raw html
<center>
<img src="assets/ex_transportation.png" width="1000px"/>
</center>
```
### Table of Contents
* [Usage](usage.md)
* [Input and Output Data Formats](format.md)
* [Simplified Solution Reports](reports.md)
* [Optimization Model](model.md)
```@contents
Pages = ["usage.md", "format.md", "reports.md", "model.md"]
Depth = 3
```
### Source Code
* [https://github.com/ANL-CEEESA/RELOG](https://github.com/ANL-CEEESA/RELOG)
### Authors
* **Alinson S. Xavier,** Argonne National Laboratory <<axavier@anl.gov>>
* **Nwike Iloeje,** Argonne National Laboratory <<ciloeje@anl.gov>>
* **Alinson S. Xavier,** Argonne National Laboratory <axavier@anl.gov>
* **Nwike Iloeje,** Argonne National Laboratory <ciloeje@anl.gov>
### License

View File

@@ -6,53 +6,65 @@ In this page, we describe the precise mathematical optimization model used by RE
### Sets
* $L$ - Set of locations holding the original material to be recycled
* $M$ - Set of materials recovered during the reverse manufacturing process
* $P$ - Set of potential plants to open
* $T = \{ 1, \ldots, t^{max} \} $ - Set of time periods
Symbol | Description
:-------|:------------
$L$ | Set of locations holding the original material to be recycled
$M$ | Set of materials recovered during the reverse manufacturing process
$P$ | Set of potential plants to open
$T = \{ 1, \ldots, t^{max} \}$ | Set of time periods
### Constants
**Plants:**
#### Plants
* $c^\text{disp}_{pmt}$ - Cost of disposing one tonne of material $m$ at plant $p$ during time $t$ (`$/tonne/km`)
* $c^\text{exp}_{pt}$ - Cost of adding one tonne of capacity to plant $p$ at time $t$ (`$/tonne`)
* $c^\text{open}_{pt}$ - Cost of opening plant $p$ at time $t$, at minimum capacity (`$`)
* $c^\text{f-base}_{pt}$ - Fixed cost of keeping plant $p$ open during time period $t$ (`$`)
* $c^\text{f-exp}_{pt}$ - Increase in fixed cost for each additional tonne of capacity (`$/tonne`)
* $c^\text{var}_{pt}$ - Variable cost of processing one tonne of input at plant $p$ at time $t$ (`$/tonne`)
* $c^\text{store}_{pt}$ - Cost of storing one tonne of original material at plant $p$ at time $t$ (`$/tonne`)
* $m^\text{min}_p$ - Minimum capacity of plant $p$ (`tonne`)
* $m^\text{max}_p$ - Maximum capacity of plant $p$ (`tonne`)
* $m^\text{disp}_{pmt}$ - Maximum amount of material $m$ that plant $p$ can dispose of during time $t$ (`tonne`)
* $m^\text{store}_p$ - Maximum amount of original material that plant $p$ can store for later processing.
Symbol | Description | Unit
:-------|:------------|:---
$c^\text{disp}_{pmt}$ | Cost of disposing one tonne of material $m$ at plant $p$ during time $t$ | \$/tonne/km
$c^\text{exp}_{pt}$ | Cost of adding one tonne of capacity to plant $p$ at time $t$ | \$/tonne
$c^\text{open}_{pt}$ | Cost of opening plant $p$ at time $t$, at minimum capacity | $
$c^\text{f-base}_{pt}$ | Fixed cost of keeping plant $p$ open during time period $t$ | $
$c^\text{f-exp}_{pt}$ | Increase in fixed cost for each additional tonne of capacity | \$/tonne
$c^\text{var}_{pt}$ | Variable cost of processing one tonne of input at plant $p$ at time $t$ | \$/tonne
$c^\text{store}_{pt}$ | Cost of storing one tonne of original material at plant $p$ at time $t$ | \$/tonne
$m^\text{min}_p$ | Minimum capacity of plant $p$ | tonne
$m^\text{max}_p$ | Maximum capacity of plant $p$ | tonne
$m^\text{disp}_{pmt}$ | Maximum amount of material $m$ that plant $p$ can dispose of during time $t$ | tonne
$m^\text{store}_p$ | Maximum amount of original material that plant $p$ can store for later processing. | tonne
**Products:**
#### Products
* $\alpha_{pm}$ - Amount of material $m$ recovered by plant $t$ for each tonne of original material (`tonne/tonne`)
* $m^\text{initial}_{lt}$ - Amount of original material to be recycled at location $l$ during time $t$ (`tonne`)
Symbol | Description | Unit
:-------|:------------|:---
$\alpha_{pm}$ | Amount of material $m$ recovered by plant $t$ for each tonne of original material | tonne/tonne
$m^\text{initial}_{lt}$ | Amount of original material to be recycled at location $l$ during time $t$ | tonne
**Transportation:**
#### Transportation
* $c^\text{tr}_{t}$ - Transportation cost during time $t$ (`$/tonne/km`)
* $d_{lp}$ - Distance between plant $p$ and location $l$ (`km`)
Symbol | Description | Unit
:-------|:------------|:---
$c^\text{tr}_{t}$ | Transportation cost during time $t$ | \$/tonne/km
$d_{lp}$ | Distance between plant $p$ and location $l$ | km
### Decision variables
* $q_{mpt}$ - Amount of material $m$ recovered by plant $p$ during time $t$ (`tonne`)
* $u_{pt}$ - Binary variable that equals 1 if plant $p$ starts operating at time $t$ (`bool`)
* $w_{pt}$ - Extra capacity (amount above the minimum) added to plant $p$ during time $t$ (`tonne`)
* $x_{pt}$ - Binary variable that equals 1 if plant $p$ is operational at time $t$ (`bool`)
* $y_{lpt}$ - Amount of product sent from location $l$ to plant $p$ during time $t$ (`tonne`)
* $z^{\text{disp}}_{mpt}$ - Amount of material $m$ disposed of by plant $p$ during time $t$ (`tonne`)
* $z^{\text{store}}_{pt}$ - Amount of original material in storage at plant $p$ by the end of time period $t$ (`tonne`)
* $z^{\text{proc}}_{mpt}$ - Amount of original material processed by plant $p$ during time period $t$ (`tonne`)
Symbol | Description | Unit
:-------|:------------|:---
$q_{mpt}$ | Amount of material $m$ recovered by plant $p$ during time $t$ | tonne
$u_{pt}$ | Binary variable that equals 1 if plant $p$ starts operating at time $t$ | Boolean
$w_{pt}$ | Extra capacity (amount above the minimum) added to plant $p$ during time $t$ | tonne
$x_{pt}$ | Binary variable that equals 1 if plant $p$ is operational at time $t$ | Boolean
$y_{lpt}$ | Amount of product sent from location $l$ to plant $p$ during time $t$ | tonne
$z^{\text{disp}}_{mpt}$ | Amount of material $m$ disposed of by plant $p$ during time $t$ | tonne
$z^{\text{store}}_{pt}$ | Amount of original material in storage at plant $p$ by the end of time period $t$ | tonne
$z^{\text{proc}}_{mpt}$ | Amount of original material processed by plant $p$ during time period $t$ | tonne
### Objective function
RELOG minimizes the overall capital, production and transportation costs:
```math
\begin{align*}
\text{minimize} \;\; &
\sum_{t \in T} \sum_{p \in P} \left[
@@ -73,6 +85,7 @@ RELOG minimizes the overall capital, production and transportation costs:
&
\sum_{t \in T} \sum_{p \in P} \sum_{m \in M} c^{\text{disp}}_{pmt} z_{pmt}
\end{align*}
```
In the first line, we have (i) opening costs, if plant starts operating at time $t$, (ii) fixed operating costs, if plant is operational, (iii) additional fixed operating costs coming from expansion performed in all previous time periods up to the current one, and finally (iv) the expansion costs during the current time period.
In the second line, we have storage and variable processing costs.
@@ -83,14 +96,17 @@ In the fourth line, we have the disposal costs.
* All original materials must be sent to a plant:
\begin{align}
```math
\begin{align*}
& \sum_{p \in P} y_{lpt} = m^\text{initial}_{lt}
& \forall l \in L, t \in T
\end{align}
\end{align*}
```
* Amount received equals amount processed plus stored. Furthermore, all original material should be processed by the end of the simulation.
\begin{align}
```math
\begin{align*}
& \sum_{l \in L} y_{lpt} + z^{\text{store}}_{p,t-1}
= z^{\text{proc}}_{pt} + z^{\text{store}}_{p,t}
& \forall p \in P, t \in T \\
@@ -98,56 +114,70 @@ In the fourth line, we have the disposal costs.
& \forall p \in P \\
& z^{\text{store}}_{p,t^{\max}} = 0
& \forall p \in P
\end{align}
\end{align*}
```
* Plants have a limited processing capacity. Furthermore, if a plant is closed, it has zero processing capacity:
\begin{align}
```math
\begin{align*}
& z^{\text{proc}}_{pt} \leq m^\text{min}_p x_p + \sum_{i=1}^t w_p
& \forall p \in P, t \in T
\end{align}
\end{align*}
```
* Plants have limited storage capacity. Furthermore, if a plant is closed, is has zero storage capacity:
\begin{align}
```math
\begin{align*}
& z^{\text{store}}_{pt} \leq m^\text{store}_p x_p
& \forall p \in P, t \in T
\end{align}
\end{align*}
```
* Plants can only be expanded up to their maximum capacity. Furthermore, if a plant is closed, it cannot be expanded:
\begin{align}
```math
\begin{align*}
& \sum_{i=1}^t w_p \leq m^\text{max}_p x_p
& \forall p \in P, t \in T
\end{align}
\end{align*}
```
* Amount of recovered material is proportional to amount processed:
\begin{align}
```math
\begin{align*}
& q_{mpt} = \alpha_{pm} z^{\text{proc}}_{pt}
& \forall m \in M, p \in P, t \in T
\end{align}
\end{align*}
```
* Because we only consider a single type of plant, all recovered material must be immediately disposed of. In RELOG's full model, recovered materials may be sent to another plant for further processing.
\begin{align}
```math
\begin{align*}
& q_{mpt} = z_{mpt}
& \forall m \in M, p \in P, t \in T
\end{align}
\end{align*}
```
* A plant is operational at time $t$ if it was operational at time $t-1$ or it was built at time $t$. This constraint also prevents a plant from being built multiple times.
\begin{align}
```math
\begin{align*}
& x_{pt} = x_{p,t-1} + u_{pt}
& \forall p \in P, t \in T \setminus \{1\} \\
& x_{p,1} = u_{p,1}
& \forall p \in P
\end{align}
\end{align*}
```
* Variable bounds:
\begin{align}
```math
\begin{align*}
& q_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T \\
& u_{pt} \in \{0,1\}
@@ -162,4 +192,5 @@ In the fourth line, we have the disposal costs.
& p \in P, t \in T \\
& z^{\text{disp}}_{mpt}, z^{\text{proc}}_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T
\end{align}
\end{align*}
```

View File

@@ -9,7 +9,7 @@ In this page, we also illustrate what types of charts and visualizations can be
Report showing plant costs, capacities, energy expenditure and utilization factors. Generated by `RELOG.write_plants_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | What year this row corresponds to. This reports includes one row for each year.
@@ -45,7 +45,9 @@ sns.barplot(x="year",
.reset_index());
```
<img src="../images/ex_plant_cost_per_year.png" width="500px"/>
```@raw html
<img src="../assets/ex_plant_cost_per_year.png" width="500px"/>
```
* Map showing plant locations (in Python):
```python
@@ -65,8 +67,9 @@ points = gp.points_from_xy(data["longitude (deg)"],
gp.GeoDataFrame(data, geometry=points).plot(ax=ax);
```
<img src="../images/ex_plant_locations.png" width="1000px"/>
```@raw html
<img src="../assets/ex_plant_locations.png" width="1000px"/>
```
## Plant outputs report
@@ -74,7 +77,7 @@ Report showing amount of products produced, sent and disposed of by each plant,
| Column | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | What year this row corresponds to. This reports includes one row for each year.
@@ -101,7 +104,9 @@ sns.barplot(x="amount produced (tonne)",
.reset_index());
```
<img src="../images/ex_amount_produced.png" width="500px"/>
```@raw html
<img src="../assets/ex_amount_produced.png" width="500px"/>
```
## Plant emissions report
@@ -109,7 +114,7 @@ sns.barplot(x="amount produced (tonne)",
Report showing amount of emissions produced by each plant. Generated by `RELOG.write_plant_emissions_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | Year.
@@ -133,20 +138,23 @@ sns.barplot(x="plant type",
.reset_index());
```
<img src="../images/ex_emissions.png" width="500px"/>
```@raw html
<img src="../assets/ex_emissions.png" width="500px"/>
```
## Products report
Report showing primary product amounts, locations and marginal costs. Generated by `RELOG.write_products_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
| `product name` | Product name.
| `location name` | Name of the collection center.
| `latitude (deg)` | Latitude of the collection center.
| `longitude (deg)` | Longitude of the collection center.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `amount (tonne)` | Amount of product available at this collection center.
| `amount disposed (tonne)` | Amount of product disposed of at this collection center.
| `marginal cost ($/tonne)` | Cost to process one additional tonne of this product coming from this collection center.
@@ -156,7 +164,7 @@ Report showing amount of product sent from initial locations to plants, and from
| Column | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
| `source type` | If product is being shipped from an initial location, equals `Origin`. If product is being shipped from a plant, equals plant type.
| `source location name` | Name of the location where the product is being shipped from.
| `source latitude (deg)` | Latitude of the source location.
@@ -190,7 +198,9 @@ sns.barplot(x="product",
.reset_index());
```
<img src="../images/ex_transportation_amount_distance.png" width="500px"/>
```@raw html
<img src="../assets/ex_transportation_amount_distance.png" width="500px"/>
```
* Map of transportation lines (in Python):
@@ -233,7 +243,9 @@ gp.GeoDataFrame(data, geometry=points).plot(ax=ax,
markersize=50);
```
<img src="../images/ex_transportation.png" width="1000px"/>
```@raw html
<img src="../assets/ex_transportation.png" width="1000px"/>
```
## Transportation emissions report
@@ -241,7 +253,7 @@ gp.GeoDataFrame(data, geometry=points).plot(ax=ax,
Report showing emissions for each trip between initial locations and plants, and between pairs of plants. Generated by `RELOG.write_transportation_emissions_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
|:--------------------------------------|:---------------|
| `source type` | If product is being shipped from an initial location, equals `Origin`. If product is being shipped from a plant, equals plant type.
| `source location name` | Name of the location where the product is being shipped from.
| `source latitude (deg)` | Latitude of the source location.
@@ -275,4 +287,6 @@ sns.barplot(x="emission type",
.reset_index());
```
<img src="../images/ex_transportation_emissions.png" width="500px"/>
```@raw html
<img src="../assets/ex_transportation_emissions.png" width="500px"/>
```

View File

@@ -3,22 +3,11 @@ Usage
## 1. Installation
To use RELOG, the first step is to install the [Julia programming language](https://julialang.org/) on your machine. Note that RELOG was developed and tested with Julia 1.5 and may not be compatible with newer versions. After Julia is installed, launch the Julia console, type `]` to switch to package manger mode, then run:
To use RELOG, the first step is to install the [Julia programming language](https://julialang.org/) on your machine. Note that RELOG was developed and tested with Julia 1.8 and may not be compatible with newer versions. After Julia is installed, launch the Julia console, then run:
```text
(@v1.5) pkg> add https://github.com/ANL-CEEESA/RELOG.git
```
After the package and all its dependencies have been installed, please run the RELOG test suite, as shown below, to make sure that the package has been correctly installed:
```text
(@v1.5) pkg> test RELOG
```
To update the package to a newer version, type `]` to enter the package manager mode, then run:
```text
(@v1.5) pkg> update RELOG
```julia
using Pkg
Pkg.add(name="RELOG", version="0.6")
```
## 2. Modeling the problem
@@ -106,18 +95,22 @@ To use the `resolve` method, the new input file should be very similar to the or
### 5.1 Changing the solver
By default, RELOG internally uses [Cbc](https://github.com/coin-or/Cbc), an open-source and freely-available Mixed-Integer Linear Programming solver developed by the [COIN-OR Project](https://www.coin-or.org/). For larger-scale test cases, a commercial solver such as Gurobi, CPLEX or XPRESS is recommended. The following snippet shows how to switch from Cbc to Gurobi, for example:
By default, RELOG internally uses [HiGHS](https://github.com/ERGO-Code/HiGHS), an open-source and freely-available Mixed-Integer Linear Programming solver. For larger-scale test cases, a commercial solver such as Gurobi, CPLEX or XPRESS is recommended. The following snippet shows how to switch to Gurobi, for example:
```julia
using RELOG, Gurobi, JuMP
gurobi = optimizer_with_attributes(Gurobi.Optimizer,
"TimeLimit" => 3600,
"MIPGap" => 0.001)
gurobi = optimizer_with_attributes(
Gurobi.Optimizer,
"TimeLimit" => 3600,
"MIPGap" => 0.001,
)
RELOG.solve("instance.json",
output="solution.json",
optimizer=gurobi)
RELOG.solve(
"instance.json",
output="solution.json",
optimizer=gurobi,
)
```
### 5.2 Multi-period heuristics
@@ -133,6 +126,8 @@ To solve an instance using this heuristic, use the option `heuristic=true`, as s
```julia
using RELOG
solution = RELOG.solve("/home/user/instance.json",
heuristic=true)
solution = RELOG.solve(
"/home/user/instance.json",
heuristic=true,
)
```

View File

@@ -1,202 +0,0 @@
{
"parameters": {
"time horizon (years)": 2
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.11],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.050],
"CH4": [0.003, 0.002]
},
"initial amounts": {
"C1": {
"latitude (deg)": 7.0,
"longitude (deg)": 7.0,
"amount (tonne)": [934.56, 934.56]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [198.95, 198.95]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [212.97, 212.97]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [352.19, 352.19]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [510.33, 510.33]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [471.66, 471.66]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [785.21, 785.21]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [706.17, 706.17]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [30.08, 30.08]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [536.52, 536.52]
}
}
},
"P2": {
"transportation cost ($/km/tonne)": [0.02, 0.02]
},
"P3": {
"transportation cost ($/km/tonne)": [0.0125, 0.0125]
},
"P4": {
"transportation cost ($/km/tonne)": [0.0175, 0.0175]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [0.12, 0.11],
"emissions (tonne/tonne)": {
"CO2": [0.052, 0.050],
"CH4": [0.003, 0.002]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
},
"P3": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
}
},
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [500.0, 500.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
},
"1000.0": {
"opening cost ($)": [1250.0, 1250.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
}
}
},
"L2": {
"latitude (deg)": 0.5,
"longitude (deg)": 0.5,
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [1000, 1000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
},
"10000.0": {
"opening cost ($)": [10000, 10000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [100.0, 100.0]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.20,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
}
}
}

View File

@@ -1,23 +0,0 @@
site_name: RELOG
theme: cinder
copyright: "Copyright © 2020, UChicago Argonne, LLC. All Rights Reserved."
repo_url: https://github.com/ANL-CEEESA/RELOG
edit_uri: edit/master/src/docs/
nav:
- Home: index.md
- Usage: usage.md
- Data Format: format.md
- Reports: reports.md
- Optimization Model: model.md
plugins:
- search
markdown_extensions:
- admonition
- mdx_math
extra_javascript:
- https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS-MML_HTMLorMML
- js/mathjax.js
docs_dir: src/docs
site_dir: docs
extra_css:
- "css/custom.css"

View File

@@ -4,20 +4,24 @@
module RELOG
include("instance/structs.jl")
using Pkg
version() = Pkg.dependencies()[Base.UUID("a2afcdf7-cf04-4913-85f9-c0d81ddf2008")].version
include("instance/structs.jl")
include("graph/structs.jl")
include("instance/geodb.jl")
include("graph/dist.jl")
include("graph/build.jl")
include("graph/csv.jl")
include("instance/compress.jl")
include("instance/geodb.jl")
include("instance/parse.jl")
include("instance/validate.jl")
include("model/build.jl")
include("model/getsol.jl")
include("model/solve.jl")
include("model/resolve.jl")
include("model/solve.jl")
include("reports/plant_emissions.jl")
include("reports/plant_outputs.jl")
include("reports/plants.jl")

View File

@@ -1,28 +0,0 @@
.navbar-default {
border-bottom: 0px;
background-color: #fff;
box-shadow: 0px 0px 15px rgba(0, 0, 0, 0.2);
}
a, .navbar-default a {
color: #06a !important;
font-weight: normal;
}
.disabled > a {
color: #999 !important;
}
.navbar-default a:hover,
.navbar-default .active,
.active > a {
background-color: #f0f0f0 !important;
}
.icon-bar {
background-color: #666 !important;
}
.navbar-collapse {
border-color: #fff !important;
}

View File

@@ -1,8 +0,0 @@
MathJax.Hub.Config({
"tex2jax": { inlineMath: [ [ '$', '$' ] ] }
});
MathJax.Hub.Config({
config: ["MMLorHTML.js"],
jax: ["input/TeX", "output/HTML-CSS", "output/NativeMML"],
extensions: ["MathMenu.js", "MathZoom.js"]
});

View File

@@ -2,14 +2,6 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(distance(x, y) / 1000.0, digits = 2)
end
function build_graph(instance::Instance)::Graph
arcs = []
next_index = 0
@@ -18,6 +10,7 @@ function build_graph(instance::Instance)::Graph
collection_shipping_nodes = ShippingNode[]
name_to_process_node_map = Dict{Tuple{AbstractString,AbstractString},ProcessNode}()
collection_center_to_node = Dict()
process_nodes_by_input_product =
Dict(product => ProcessNode[] for product in instance.products)
@@ -27,6 +20,7 @@ function build_graph(instance::Instance)::Graph
for center in instance.collection_centers
node = ShippingNode(next_index, center, center.product, [], [])
next_index += 1
collection_center_to_node[center] = node
push!(collection_shipping_nodes, node)
end
@@ -50,11 +44,12 @@ function build_graph(instance::Instance)::Graph
# Build arcs from collection centers to plants, and from one plant to another
for source in [collection_shipping_nodes; plant_shipping_nodes]
for dest in process_nodes_by_input_product[source.product]
distance = calculate_distance(
distance = _calculate_distance(
source.location.latitude,
source.location.longitude,
dest.location.latitude,
dest.location.longitude,
instance.distance_metric,
)
values = Dict("distance" => distance)
arc = Arc(source, dest, values)
@@ -83,6 +78,7 @@ function build_graph(instance::Instance)::Graph
collection_shipping_nodes,
arcs,
name_to_process_node_map,
collection_center_to_node,
)
end

60
src/graph/dist.jl Normal file
View File

@@ -0,0 +1,60 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
using NearestNeighbors
using DataFrames
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
::EuclideanDistance,
)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
metric::KnnDrivingDistance,
)::Float64
if metric.tree === nothing
basedir = joinpath(dirname(@__FILE__), "..", "..", "data")
csv_filename = joinpath(basedir, "dist_driving.csv")
# Download pre-computed driving data
if !isfile(csv_filename)
_download_zip(
"https://axavier.org/RELOG/0.6/data/dist_driving_0b9a6ad6.zip",
basedir,
csv_filename,
0x0b9a6ad6,
)
end
# Fit kNN model
df = DataFrame(CSV.File(csv_filename, missingstring = "NaN"))
dropmissing!(df)
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
metric.ratios = Matrix(df[!, [:ratio]])
metric.tree = KDTree(coords)
end
# Compute Euclidean distance
dist_euclidean =
_calculate_distance(source_lat, source_lon, dest_lat, dest_lon, EuclideanDistance())
# Predict ratio
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
ratio_pred = mean(metric.ratios[idxs])
dist_pred = round(dist_euclidean * ratio_pred, digits = 3)
isfinite(dist_pred) || error("non-finite distance detected: $dist_pred")
return dist_pred
end

View File

@@ -33,6 +33,7 @@ mutable struct Graph
collection_shipping_nodes::Vector{ShippingNode}
arcs::Vector{Arc}
name_to_process_node_map::Dict{Tuple{AbstractString,AbstractString},ProcessNode}
collection_center_to_node::Dict{CollectionCenter,ShippingNode}
end
function Base.show(io::IO, instance::Graph)

View File

@@ -23,8 +23,20 @@ function parse(json)::Instance
validate(json, Schema(json_schema))
building_period = [1]
if "building period (years)" in keys(json)
building_period = json["building period (years)"]
if "building period (years)" in keys(json["parameters"])
building_period = json["parameters"]["building period (years)"]
end
distance_metric = EuclideanDistance()
if "distance metric" in keys(json["parameters"])
metric_name = json["parameters"]["distance metric"]
if metric_name == "driving"
distance_metric = KnnDrivingDistance()
elseif metric_name == "Euclidean"
# nop
else
error("Unknown distance metric: $metric_name")
end
end
plants = Plant[]
@@ -37,6 +49,8 @@ function parse(json)::Instance
cost = product_dict["transportation cost (\$/km/tonne)"]
energy = zeros(T)
emissions = Dict()
disposal_limit = zeros(T)
disposal_cost = zeros(T)
if "transportation energy (J/km/tonne)" in keys(product_dict)
energy = product_dict["transportation energy (J/km/tonne)"]
@@ -46,7 +60,25 @@ function parse(json)::Instance
emissions = product_dict["transportation emissions (tonne/km/tonne)"]
end
product = Product(product_name, cost, energy, emissions)
if "disposal limit (tonne)" in keys(product_dict)
disposal_limit = product_dict["disposal limit (tonne)"]
end
if "disposal cost (\$/tonne)" in keys(product_dict)
disposal_cost = product_dict["disposal cost (\$/tonne)"]
end
prod_centers = []
product = Product(
product_name,
cost,
energy,
emissions,
disposal_limit,
disposal_cost,
prod_centers,
)
push!(products, product)
prod_name_to_product[product_name] = product
@@ -66,6 +98,7 @@ function parse(json)::Instance
product,
center_dict["amount (tonne)"],
)
push!(prod_centers, center)
push!(collection_centers, center)
end
end
@@ -176,5 +209,12 @@ function parse(json)::Instance
@info @sprintf("%12d collection centers", length(collection_centers))
@info @sprintf("%12d candidate plant locations", length(plants))
return Instance(T, products, collection_centers, plants, building_period)
return Instance(
T,
products,
collection_centers,
plants,
building_period,
distance_metric,
)
end

View File

@@ -13,6 +13,9 @@ mutable struct Product
transportation_cost::Vector{Float64}
transportation_energy::Vector{Float64}
transportation_emissions::Dict{String,Vector{Float64}}
disposal_limit::Vector{Float64}
disposal_cost::Vector{Float64}
collection_centers::Vector
end
mutable struct CollectionCenter
@@ -48,10 +51,21 @@ mutable struct Plant
storage_cost::Vector{Float64}
end
abstract type DistanceMetric end
Base.@kwdef mutable struct KnnDrivingDistance <: DistanceMetric
tree = nothing
ratios = nothing
end
mutable struct EuclideanDistance <: DistanceMetric end
mutable struct Instance
time::Int64
products::Vector{Product}
collection_centers::Vector{CollectionCenter}
plants::Vector{Plant}
building_period::Vector{Int64}
distance_metric::DistanceMetric
end

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures
function build_model(instance::Instance, graph::Graph, optimizer)::JuMP.Model
model = Model(optimizer)
@@ -20,13 +20,17 @@ function create_vars!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:flow] =
Dict((a, t) => @variable(model, lower_bound = 0) for a in graph.arcs, t = 1:T)
model[:dispose] = Dict(
model[:plant_dispose] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.disposal_limit[n.product][t]
) for n in values(graph.plant_shipping_nodes), t = 1:T
)
model[:collection_dispose] = Dict(
(n, t) => @variable(model, lower_bound = 0,) for
n in values(graph.collection_shipping_nodes), t = 1:T
)
model[:store] = Dict(
(n, t) =>
@variable(model, lower_bound = 0, upper_bound = n.location.storage_limit)
@@ -131,14 +135,25 @@ function create_objective_function!(model::JuMP.Model)
end
end
# Shipping node costs
# Plant shipping node costs
for n in values(graph.plant_shipping_nodes), t = 1:T
# Disposal costs
add_to_expression!(
obj,
n.location.disposal_cost[n.product][t],
model[:dispose][n, t],
model[:plant_dispose][n, t],
)
end
# Collection shipping node costs
for n in values(graph.collection_shipping_nodes), t = 1:T
# Disposal costs
add_to_expression!(
obj,
n.location.product.disposal_cost[t],
model[:collection_dispose][n, t],
)
end
@@ -154,16 +169,29 @@ function create_shipping_node_constraints!(model::JuMP.Model)
for n in graph.collection_shipping_nodes
model[:eq_balance][n, t] = @constraint(
model,
sum(model[:flow][a, t] for a in n.outgoing_arcs) == n.location.amount[t]
sum(model[:flow][a, t] for a in n.outgoing_arcs) ==
n.location.amount[t] + model[:collection_dispose][n, t]
)
end
for prod in model[:instance].products
if isempty(prod.collection_centers)
continue
end
expr = AffExpr()
for center in prod.collection_centers
n = graph.collection_center_to_node[center]
add_to_expression!(expr, model[:collection_dispose][n, t])
end
@constraint(model, expr <= prod.disposal_limit[t])
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(
model,
sum(model[:flow][a, t] for a in n.incoming_arcs) ==
sum(model[:flow][a, t] for a in n.outgoing_arcs) + model[:dispose][n, t]
sum(model[:flow][a, t] for a in n.outgoing_arcs) +
model[:plant_dispose][n, t]
)
end
end

View File

@@ -2,7 +2,7 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures
function get_solution(model::JuMP.Model; marginal_costs = true)
graph, instance = model[:graph], model[:instance]
@@ -39,21 +39,24 @@ function get_solution(model::JuMP.Model; marginal_costs = true)
end
# Products
if marginal_costs
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any,Any}(
"Marginal cost (\$/tonne)" => [
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for t = 1:T
],
"Latitude (deg)" => n.location.latitude,
"Longitude (deg)" => n.location.longitude,
"Amount (tonne)" => n.location.amount,
)
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any,Any}(
"Latitude (deg)" => n.location.latitude,
"Longitude (deg)" => n.location.longitude,
"Amount (tonne)" => n.location.amount,
"Dispose (tonne)" =>
[JuMP.value(model[:collection_dispose][n, t]) for t = 1:T],
)
if marginal_costs
location_dict["Marginal cost (\$/tonne)"] = [
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for
t = 1:T
]
end
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
# Plants
@@ -178,13 +181,14 @@ function get_solution(model::JuMP.Model; marginal_costs = true)
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount = [JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
disposal_amount =
[JuMP.value(model[:plant_dispose][shipping_node, t]) for t = 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] =
disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] =
[JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
[JuMP.value(model[:plant_dispose][shipping_node, t]) for t = 1:T]
disposal_dict["Cost (\$)"] = [
disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t] for t = 1:T

View File

@@ -2,26 +2,26 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures, HiGHS
function _get_default_milp_optimizer()
return optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
return optimizer_with_attributes(HiGHS.Optimizer)
end
function _get_default_lp_optimizer()
return optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
return optimizer_with_attributes(HiGHS.Optimizer)
end
function _print_graph_stats(instance::Instance, graph::Graph)::Nothing
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf("%12d time periods", instance.time)
@info @sprintf("%12d process nodes", length(graph.process_nodes))
@info @sprintf("%12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(
" %12d shipping nodes (collection)",
"%12d shipping nodes (collection)",
length(graph.collection_shipping_nodes)
)
@info @sprintf(" %12d arcs", length(graph.arcs))
@info @sprintf("%12d arcs", length(graph.arcs))
return
end
@@ -41,7 +41,7 @@ function solve(
else
# If only MIP optimizer is provided, use it as
# LP solver too.
lp_optimizer = optimizer
lp_optimizer = optimizer
end
end
@@ -98,7 +98,13 @@ function solve(filename::AbstractString; heuristic = false, kwargs...)
if heuristic && instance.time > 1
@info "Solving single-period version..."
compressed = _compress(instance)
csol = solve(compressed; output = nothing, marginal_costs = false, kwargs...)
csol, _ = solve(
compressed;
return_model = true,
output = nothing,
marginal_costs = false,
kwargs...,
)
@info "Filtering candidate locations..."
selected_pairs = []
for (plant_name, plant_dict) in csol["Plants"]

View File

@@ -13,6 +13,7 @@ function products_report(solution; marginal_costs = true)::DataFrame
df."longitude (deg)" = Float64[]
df."year" = Int[]
df."amount (tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."marginal cost (\$/tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (prod_name, prod_dict) in solution["Products"]
@@ -22,6 +23,7 @@ function products_report(solution; marginal_costs = true)::DataFrame
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
amount = location_dict["Amount (tonne)"][year]
amount_disposed = location_dict["Dispose (tonne)"][year]
push!(
df,
[
@@ -32,6 +34,7 @@ function products_report(solution; marginal_costs = true)::DataFrame
year,
amount,
marginal_cost,
amount_disposed,
],
)
end

View File

@@ -14,6 +14,9 @@
"properties": {
"time horizon (years)": {
"type": "number"
},
"distance metric": {
"type": "string"
}
},
"required": [
@@ -169,6 +172,12 @@
},
"initial amounts": {
"$ref": "#/definitions/InitialAmount"
},
"disposal limit (tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"disposal cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": [

View File

@@ -1,15 +0,0 @@
using PackageCompiler
using Cbc
using Clp
using Geodesy
using JSON
using JSONSchema
using JuMP
using MathOptInterface
using ProgressBars
pkg = [:Cbc, :Clp, :Geodesy, :JSON, :JSONSchema, :JuMP, :MathOptInterface, :ProgressBars]
@info "Building system image..."
create_sysimage(pkg, sysimage_path = "build/sysimage.so")

View File

@@ -1,40 +1,34 @@
println("Initializing...")
using Logging
using Cbc
using Clp
using JSON
using JuMP
using HiGHS
using RELOG
function solve(root, filename)
ref_file = "$root/$filename"
optimizer = optimizer_with_attributes(
Cbc.Optimizer,
"seconds" => 900,
HiGHS.Optimizer,
"time_limit" => parse(Float64, ENV["RELOG_TIME_LIMIT_SEC"]),
)
ref_solution, ref_model = RELOG.solve(
ref_file,
optimizer=optimizer,
lp_optimizer=Clp.Optimizer,
return_model=true,
marginal_costs=true,
heuristic = true,
optimizer = optimizer,
lp_optimizer = HiGHS.Optimizer,
return_model = true,
marginal_costs = true,
)
Libc.flush_cstdio()
flush(stdout)
sleep(1)
if length(ref_solution) == 0
return
end
RELOG.write_products_report(
ref_solution,
replace(ref_file, ".json" => "_products.csv"),
)
RELOG.write_plants_report(
ref_solution,
replace(ref_file, ".json" => "_plants.csv"),
)
RELOG.write_products_report(ref_solution, replace(ref_file, ".json" => "_products.csv"))
RELOG.write_plants_report(ref_solution, replace(ref_file, ".json" => "_plants.csv"))
RELOG.write_plant_outputs_report(
ref_solution,
replace(ref_file, ".json" => "_plant_outputs.csv"),
@@ -43,10 +37,7 @@ function solve(root, filename)
ref_solution,
replace(ref_file, ".json" => "_plant_emissions.csv"),
)
RELOG.write_transportation_report(
ref_solution,
replace(ref_file, ".json" => "_tr.csv"),
)
RELOG.write_transportation_report(ref_solution, replace(ref_file, ".json" => "_tr.csv"))
RELOG.write_transportation_emissions_report(
ref_solution,
replace(ref_file, ".json" => "_tr_emissions.csv"),
@@ -60,16 +51,13 @@ function solve(root, filename)
sc_solution = RELOG.resolve(
ref_model,
scenario,
optimizer=optimizer,
lp_optimizer=Clp.Optimizer,
optimizer = optimizer,
lp_optimizer = HiGHS.Optimizer,
)
if length(sc_solution) == 0
return
end
RELOG.write_plants_report(
sc_solution,
replace(scenario, ".json" => "_plants.csv"),
)
RELOG.write_plants_report(sc_solution, replace(scenario, ".json" => "_plants.csv"))
RELOG.write_products_report(
sc_solution,
replace(scenario, ".json" => "_products.csv"),
@@ -114,10 +102,7 @@ function solve_recursive(path)
endswith(filename, "_plants.csv") || continue
push!(
results,
joinpath(
replace(root, path => ""),
replace(filename, "_plants.csv" => ""),
),
joinpath(replace(root, path => ""), replace(filename, "_plants.csv" => "")),
)
end
end
@@ -128,4 +113,4 @@ function solve_recursive(path)
run(`zip -r output.zip .`)
end
solve_recursive(ARGS[1])
solve_recursive(ARGS[1])

View File

@@ -32,11 +32,11 @@ function submit(req::HTTP.Request)
end
# Run job
run(`bash -c "(julia --project=$PROJECT_DIR $PROJECT_DIR/src/web/run.jl $job_path 2>&1 | tee $job_path/solve.log) >/dev/null 2>&1 &"`)
response = Dict(
"job_id" => job_id,
run(
`bash -c "(julia --project=$PROJECT_DIR $PROJECT_DIR/src/web/run.jl $job_path 2>&1 | tee $job_path/solve.log) >/dev/null 2>&1 &"`,
)
response = Dict("job_id" => job_id)
return HTTP.Response(200, body = JSON.json(response))
end
@@ -63,4 +63,3 @@ function web(host = "127.0.0.1", port = 8080)
HTTP.serve(ROUTER, host, port)
Base.exit_on_sigint(true)
end

19
test/Project.toml Normal file
View File

@@ -0,0 +1,19 @@
name = "RELOGT"
uuid = "a6dae211-05d8-42ed-9081-b88c982fc90a"
authors = ["Alinson S. Xavier <git@axavier.org>"]
version = "0.1.0"
[deps]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
JuliaFormatter = "98e50ef6-434e-11e9-1051-2b60c6c9e899"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
RELOG = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[compat]
JuliaFormatter = "1"

358
test/fixtures/s1.json vendored Normal file
View File

@@ -0,0 +1,358 @@
{
"parameters": {
"time horizon (years)": 2,
"distance metric": "driving"
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [
0.015,
0.015
],
"transportation energy (J/km/tonne)": [
0.12,
0.11
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"initial amounts": {
"C1": {
"latitude (deg)": 7.0,
"longitude (deg)": 7.0,
"amount (tonne)": [
934.56,
934.56
]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [
198.95,
198.95
]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [
212.97,
212.97
]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [
352.19,
352.19
]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [
510.33,
510.33
]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [
471.66,
471.66
]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [
785.21,
785.21
]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [
706.17,
706.17
]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [
30.08,
30.08
]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [
536.52,
536.52
]
}
},
"disposal limit (tonne)": [
1.0,
1.0
],
"disposal cost ($/tonne)": [
-1000,
-1000
]
},
"P2": {
"transportation cost ($/km/tonne)": [
0.02,
0.02
]
},
"P3": {
"transportation cost ($/km/tonne)": [
0.0125,
0.0125
]
},
"P4": {
"transportation cost ($/km/tonne)": [
0.0175,
0.0175
]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [
0.12,
0.11
],
"emissions (tonne/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
},
"P3": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
}
},
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [
500.0,
500.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
},
"1000.0": {
"opening cost ($)": [
1250.0,
1250.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
}
}
},
"L2": {
"latitude (deg)": 0.5,
"longitude (deg)": 0.5,
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [
1000,
1000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
},
"10000.0": {
"opening cost ($)": [
10000,
10000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [
100.0,
100.0
]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.20,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
}
}
}

BIN
test/fixtures/s1.zip vendored Normal file

Binary file not shown.

View File

@@ -1,39 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "build_graph" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1095.62
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end

View File

@@ -1,53 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "compress" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
compressed = RELOG._compress(instance)
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
end

View File

@@ -1,25 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
@testset "geodb_query (2018-us-county)" begin
region = RELOG.geodb_query("2018-us-county:17043")
@test region.centroid.lat == 41.83956
@test region.centroid.lon == -88.08857
@test region.population == 922_921
end
# @testset "geodb_query (2018-us-zcta)" begin
# region = RELOG.geodb_query("2018-us-zcta:60439")
# @test region.centroid.lat == 41.68241
# @test region.centroid.lon == -87.98954
# end
@testset "geodb_query (us-state)" begin
region = RELOG.geodb_query("us-state:IL")
@test region.centroid.lat == 39.73939
@test region.centroid.lon == -89.50414
@test region.population == 12_671_821
end

View File

@@ -1,86 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "parse" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(plants) == 6
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "parse (geodb)" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s2.json")
centers = instance.collection_centers
@test centers[1].name == "C1"
@test centers[1].latitude == 41.83956
@test centers[1].longitude == -88.08857
end
# @testset "parse (invalid)" begin
# basedir = dirname(@__FILE__)
# @test_throws ErrorException RELOG.parsefile("$basedir/../fixtures/s1-wrong-length.json")
# end

View File

@@ -1,38 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
@testset "build" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
set_optimizer_attribute(model, "logLevel", 0)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
shipping_node_by_loc_and_prod_names = Dict(
(n.location.location_name, n.product.name) => n for n in graph.plant_shipping_nodes
)
@test length(model[:flow]) == 76
@test length(model[:dispose]) == 16
@test length(model[:open_plant]) == 12
@test length(model[:capacity]) == 12
@test length(model[:expansion]) == 12
l1 = process_node_by_location_name["L1"]
v = model[:capacity][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1000.0
v = model[:expansion][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 750.0
v = model[:dispose][shipping_node_by_loc_and_prod_names["L1", "P2"], 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1.0
end

View File

@@ -1,13 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
BASEDIR = dirname(@__FILE__)
@testset "Resolve" begin
# Shoud not crash
filename = joinpath(BASEDIR, "..", "..", "instances", "s1.json")
solution_old, model_old = RELOG.solve(filename, return_model = true)
solution_new = RELOG.resolve(model_old, filename)
end

View File

@@ -1,61 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
basedir = dirname(@__FILE__)
@testset "solve (exact)" begin
solution_filename_a = tempname()
solution_filename_b = tempname()
solution = RELOG.solve("$basedir/../../instances/s1.json", output = solution_filename_a)
@test isfile(solution_filename_a)
RELOG.write(solution, solution_filename_b)
@test isfile(solution_filename_b)
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
end
@testset "solve (heuristic)" begin
# Should not crash
solution = RELOG.solve("$basedir/../../instances/s1.json", heuristic = true)
end
@testset "solve (infeasible)" begin
json = JSON.parsefile("$basedir/../../instances/s1.json")
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
location_dict["amount (tonne)"] *= 1000
end
@test_throws ErrorException("No solution available") RELOG.solve(RELOG.parse(json))
end
@testset "solve (with storage)" begin
basedir = dirname(@__FILE__)
filename = "$basedir/../fixtures/storage.json"
instance = RELOG.parsefile(filename)
@test instance.plants[1].storage_limit == 50.0
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
solution = RELOG.solve(filename)
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
end

View File

@@ -1,21 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG, JSON, GZip
BASEDIR = dirname(@__FILE__)
@testset "Reports" begin
@testset "from solve" begin
solution = RELOG.solve(joinpath(BASEDIR, "..", "instances", "s1.json"))
tmp_filename = tempname()
# The following should not crash
RELOG.write_plant_emissions_report(solution, tmp_filename)
RELOG.write_plant_outputs_report(solution, tmp_filename)
RELOG.write_plants_report(solution, tmp_filename)
RELOG.write_products_report(solution, tmp_filename)
RELOG.write_transportation_emissions_report(solution, tmp_filename)
RELOG.write_transportation_report(solution, tmp_filename)
end
end

View File

@@ -1,21 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using Test
@testset "RELOG" begin
@testset "Instance" begin
include("instance/compress_test.jl")
include("instance/geodb_test.jl")
include("instance/parse_test.jl")
end
@testset "Graph" begin
include("graph/build_test.jl")
end
@testset "Model" begin
include("model/build_test.jl")
include("model/solve_test.jl")
include("model/resolve_test.jl")
end
include("reports_test.jl")
end

51
test/src/RELOGT.jl Normal file
View File

@@ -0,0 +1,51 @@
module RELOGT
using Test
using JuliaFormatter
include("instance/compress_test.jl")
include("instance/geodb_test.jl")
include("instance/parse_test.jl")
include("graph/build_test.jl")
include("graph/dist_test.jl")
include("model/build_test.jl")
include("model/solve_test.jl")
include("model/resolve_test.jl")
include("reports_test.jl")
basedir = dirname(@__FILE__)
function fixture(path::String)::String
return "$basedir/../fixtures/$path"
end
function runtests()
@testset "RELOG" begin
@testset "instance" begin
instance_compress_test()
instance_geodb_test()
instance_parse_test()
end
@testset "graph" begin
graph_build_test()
graph_dist_test()
end
@testset "model" begin
model_build_test()
model_solve_test()
model_resolve_test()
end
reports_test()
end
return
end
function format()
JuliaFormatter.format(basedir, verbose = true)
JuliaFormatter.format("$basedir/../../src", verbose = true)
return
end
export runtests, format
end # module RELOGT

View File

@@ -0,0 +1,40 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
function graph_build_test()
@testset "build_graph" begin
instance = RELOG.parsefile(fixture("s1.json"))
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1695.364
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end
end

View File

@@ -0,0 +1,27 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
function graph_dist_test()
@testset "KnnDrivingDistance" begin
# Euclidean distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG.EuclideanDistance(),
) == 265.818
# Approximate driving distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG.KnnDrivingDistance(),
) == 316.43
end
end

View File

@@ -0,0 +1,54 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
function instance_compress_test()
@testset "compress" begin
instance = RELOG.parsefile(fixture("s1.json"))
compressed = RELOG._compress(instance)
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
end
end

View File

@@ -0,0 +1,27 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
function instance_geodb_test()
@testset "geodb_query (2018-us-county)" begin
region = RELOG.geodb_query("2018-us-county:17043")
@test region.centroid.lat == 41.83956
@test region.centroid.lon == -88.08857
@test region.population == 922_921
end
# @testset "geodb_query (2018-us-zcta)" begin
# region = RELOG.geodb_query("2018-us-zcta:60439")
# @test region.centroid.lat == 41.68241
# @test region.centroid.lon == -87.98954
# end
@testset "geodb_query (us-state)" begin
region = RELOG.geodb_query("us-state:IL")
@test region.centroid.lat == 39.73939
@test region.centroid.lon == -89.50414
@test region.population == 12_671_821
end
end

View File

@@ -0,0 +1,87 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
function instance_parse_test()
@testset "parse" begin
instance = RELOG.parsefile(fixture("s1.json"))
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(plants) == 6
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
p1 = product_name_to_product["P1"]
@test p1.disposal_limit == [1.0, 1.0]
@test p1.disposal_cost == [-1000.0, -1000.0]
p2 = product_name_to_product["P2"]
@test p2.disposal_limit == [0.0, 0.0]
@test p2.disposal_cost == [0.0, 0.0]
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "parse (geodb)" begin
instance = RELOG.parsefile(fixture("s2.json"))
centers = instance.collection_centers
@test centers[1].name == "C1"
@test centers[1].latitude == 41.83956
@test centers[1].longitude == -88.08857
end
end

View File

@@ -0,0 +1,40 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
function model_build_test()
@testset "build" begin
instance = RELOG.parsefile(fixture("s1.json"))
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
set_optimizer_attribute(model, "logLevel", 0)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
shipping_node_by_loc_and_prod_names = Dict(
(n.location.location_name, n.product.name) => n for
n in graph.plant_shipping_nodes
)
@test length(model[:flow]) == 76
@test length(model[:plant_dispose]) == 16
@test length(model[:open_plant]) == 12
@test length(model[:capacity]) == 12
@test length(model[:expansion]) == 12
l1 = process_node_by_location_name["L1"]
v = model[:capacity][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1000.0
v = model[:expansion][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 750.0
v = model[:plant_dispose][shipping_node_by_loc_and_prod_names["L1", "P2"], 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1.0
end
end

View File

@@ -0,0 +1,13 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
function model_resolve_test()
@testset "Resolve" begin
# Shoud not crash
filename = fixture("s1.json")
solution_old, model_old = RELOG.solve(filename, return_model = true)
solution_new = RELOG.resolve(model_old, filename)
end
end

View File

@@ -0,0 +1,70 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
function model_solve_test()
@testset "solve (exact)" begin
solution_filename_a = tempname()
solution_filename_b = tempname()
solution = RELOG.solve(fixture("s1.json"), output = solution_filename_a)
@test isfile(solution_filename_a)
RELOG.write(solution, solution_filename_b)
@test isfile(solution_filename_b)
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
@test "Products" in keys(solution)
@test "P1" in keys(solution["Products"])
@test "C1" in keys(solution["Products"]["P1"])
@test "Dispose (tonne)" in keys(solution["Products"]["P1"]["C1"])
total_disposal =
sum([loc["Dispose (tonne)"] for loc in values(solution["Products"]["P1"])])
@test total_disposal == [1.0, 1.0]
end
@testset "solve (heuristic)" begin
# Should not crash
solution = RELOG.solve(fixture("s1.json"), heuristic = true)
end
@testset "solve (infeasible)" begin
json = JSON.parsefile(fixture("s1.json"))
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
location_dict["amount (tonne)"] *= 1000
end
@test_throws ErrorException("No solution available") RELOG.solve(RELOG.parse(json))
end
@testset "solve (with storage)" begin
filename = fixture("storage.json")
instance = RELOG.parsefile(filename)
@test instance.plants[1].storage_limit == 50.0
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
solution = RELOG.solve(filename)
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
end
end

21
test/src/reports_test.jl Normal file
View File

@@ -0,0 +1,21 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG, JSON, GZip
function reports_test()
@testset "reports" begin
@testset "from solve" begin
solution = RELOG.solve(fixture("s1.json"))
tmp_filename = tempname()
# The following should not crash
RELOG.write_plant_emissions_report(solution, tmp_filename)
RELOG.write_plant_outputs_report(solution, tmp_filename)
RELOG.write_plants_report(solution, tmp_filename)
RELOG.write_products_report(solution, tmp_filename)
RELOG.write_transportation_emissions_report(solution, tmp_filename)
RELOG.write_transportation_report(solution, tmp_filename)
end
end
end