4 Commits

39 changed files with 1050 additions and 10129 deletions

1
.gitignore vendored
View File

@@ -12,4 +12,3 @@ Manifest.toml
data
build
benchmark
**/*.log

View File

@@ -11,10 +11,12 @@ All notable changes to this project will be documented in this file.
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [Unreleased]
# [0.6.0] -- 2022-12-15
### Added
- Allow RELOG to calculate approximate driving distances, instead of just straight-line distances between points.
- Allow product disposal at collection centers
- Implement stochastic optimization
### Fixed
- Fix bug that caused building period parameter to be ignored
## [0.5.2] -- 2022-08-26
### Changed

View File

@@ -1,4 +1,4 @@
VERSION := 0.5
VERSION := 0.6
clean:
rm -rfv build Manifest.toml test/Manifest.toml deps/formatter/build deps/formatter/Manifest.toml

View File

@@ -1,35 +1,37 @@
name = "RELOG"
uuid = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
authors = ["Alinson S Xavier <axavier@anl.gov>"]
version = "0.5.2"
version = "0.6.0"
[deps]
CRC = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
Geodesy = "0ef565a4-170c-5f04-8de2-149903a85f3d"
HiGHS = "87dc4568-4c63-4d18-b0c0-bb2238e4078b"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
JSONSchema = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
NearestNeighbors = "b8a86587-4115-5ab1-83bc-aa920d37bbce"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
Shapefile = "8e980c4a-a4fe-5da2-b3a7-4b4b0353a2f4"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StochasticPrograms = "8b8459f2-c380-502b-8633-9aed2d6c2b35"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
[compat]
CRC = "4"
CSV = "0.10"
Cbc = "1"
Clp = "1"
DataFrames = "1"
DataStructures = "0.18"
GZip = "0.5"

View File

@@ -15,14 +15,14 @@
<img src="https://anl-ceeesa.github.io/RELOG/0.5/assets/ex_transportation.png" width="1000px"/>
<img src="https://anl-ceeesa.github.io/RELOG/0.6/assets/ex_transportation.png" width="1000px"/>
### Documentation
* [Usage](https://anl-ceeesa.github.io/RELOG/0.5/usage)
* [Input and Output Data Formats](https://anl-ceeesa.github.io/RELOG/0.5/format)
* [Simplified Solution Reports](https://anl-ceeesa.github.io/RELOG/0.5/reports)
* [Optimization Model](https://anl-ceeesa.github.io/RELOG/0.5/model)
* [Usage](https://anl-ceeesa.github.io/RELOG/0.6/usage)
* [Input and Output Data Formats](https://anl-ceeesa.github.io/RELOG/0.6/format)
* [Simplified Solution Reports](https://anl-ceeesa.github.io/RELOG/0.6/reports)
* [Optimization Model](https://anl-ceeesa.github.io/RELOG/0.6/model)
### Authors
@@ -30,6 +30,7 @@
* **Nwike Iloeje** <<ciloeje@anl.gov>>
* **John Atkins**
* **Kyle Sun**
* **Audrey Gallier**
### License

View File

@@ -14,6 +14,7 @@ The **parameters** section describes details about the simulation itself.
|:--------------------------|:---------------|
|`time horizon (years)` | Number of years in the simulation.
|`building period (years)` | List of years in which we are allowed to open new plants. For example, if this parameter is set to `[1,2,3]`, we can only open plants during the first three years. By default, this equals `[1]`; that is, plants can only be opened during the first year. |
|`distance metric` | Metric used to compute distances between pairs of locations. Valid options are: `"Euclidean"`, for the straight-line distance between points; or `"driving"` for an approximated driving distance. If not specified, defaults to `"Euclidean"`.
#### Example
@@ -21,7 +22,8 @@ The **parameters** section describes details about the simulation itself.
{
"parameters": {
"time horizon (years)": 2,
"building period (years)": [1]
"building period (years)": [1],
"distance metric": "driving",
}
}
```
@@ -36,8 +38,6 @@ The **products** section describes all products and subproducts in the simulatio
|`transportation energy (J/km/tonne)` | The energy required to transport this product. Must be a time series. Optional.
|`transportation emissions (tonne/km/tonne)` | A dictionary mapping the name of each greenhouse gas, produced to transport one tonne of this product along one kilometer, to the amount of gas produced (in tonnes). Must be a time series. Optional.
|`initial amounts` | A dictionary mapping the name of each location to its description (see below). If this product is not initially available, this key may be omitted. Must be a time series.
| `disposal limit (tonne)` | Total amount of product that can be disposed of across all collection centers. If omitted, all product must be processed. This parameter has no effect on product disposal at plants.
| `disposal cost ($/tonne)` | Cost of disposing one tonne of this product at a collection center. If omitted, defaults to zero. This parameter has no effect on product disposal costs at plants.
Each product may have some amount available at the beginning of each time period. In this case, the key `initial amounts` maps to a dictionary with the following keys:
@@ -75,9 +75,7 @@ Each product may have some amount available at the beginning of each time period
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.050],
"CH4": [0.003, 0.002]
},
"disposal cost ($/tonne)": [-10.0, -12.0],
"disposal limit (tonne)": [1.0, 1.0],
}
},
"P2": {
"transportation cost ($/km/tonne)": [0.022, 0.020]
@@ -224,6 +222,7 @@ Database | Description | Examples
* Plants can be expanded at any time, even long after they are open.
* All material available at the beginning of a time period must be entirely processed by the end of that time period. It is not possible to store unprocessed materials from one time period to the next.
* Up to two plant sizes are currently supported. Variable operating costs must be the same for all plant sizes.
* Accurate driving distances are only available for the continental United States.
## Output Data Format (JSON)

View File

@@ -154,7 +154,6 @@ Report showing primary product amounts, locations and marginal costs. Generated
| `longitude (deg)` | Longitude of the collection center.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `amount (tonne)` | Amount of product available at this collection center.
| `amount disposed (tonne)` | Amount of product disposed of at this collection center.
| `marginal cost ($/tonne)` | Cost to process one additional tonne of this product coming from this collection center.

View File

@@ -7,7 +7,7 @@ To use RELOG, the first step is to install the [Julia programming language](http
```julia
using Pkg
Pkg.add(name="RELOG", version="0.5")
Pkg.add(name="RELOG", version="0.6")
```
After the package and all its dependencies have been installed, please run the RELOG test suite, as shown below, to make sure that the package has been correctly installed:

203
instances/s1.json Normal file
View File

@@ -0,0 +1,203 @@
{
"parameters": {
"time horizon (years)": 2,
"distance metric": "driving"
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [0.015, 0.015],
"transportation energy (J/km/tonne)": [0.12, 0.11],
"transportation emissions (tonne/km/tonne)": {
"CO2": [0.052, 0.050],
"CH4": [0.003, 0.002]
},
"initial amounts": {
"C1": {
"latitude (deg)": 7.0,
"longitude (deg)": 7.0,
"amount (tonne)": [934.56, 934.56]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [198.95, 198.95]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [212.97, 212.97]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [352.19, 352.19]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [510.33, 510.33]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [471.66, 471.66]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [785.21, 785.21]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [706.17, 706.17]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [30.08, 30.08]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [536.52, 536.52]
}
}
},
"P2": {
"transportation cost ($/km/tonne)": [0.02, 0.02]
},
"P3": {
"transportation cost ($/km/tonne)": [0.0125, 0.0125]
},
"P4": {
"transportation cost ($/km/tonne)": [0.0175, 0.0175]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [0.12, 0.11],
"emissions (tonne/tonne)": {
"CO2": [0.052, 0.050],
"CH4": [0.003, 0.002]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
},
"P3": {
"cost ($/tonne)": [-10.0, -10.0],
"limit (tonne)": [1.0, 1.0]
}
},
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [500.0, 500.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
},
"1000.0": {
"opening cost ($)": [1250.0, 1250.0],
"fixed operating cost ($)": [30.0, 30.0],
"variable operating cost ($/tonne)": [30.0, 30.0]
}
}
},
"L2": {
"latitude (deg)": 0.5,
"longitude (deg)": 0.5,
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [1000, 1000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
},
"10000.0": {
"opening cost ($)": [10000, 10000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [100.0, 100.0]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.20,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [3000, 3000],
"fixed operating cost ($)": [50.0, 50.0],
"variable operating cost ($/tonne)": [50.0, 50.0]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [0.0, 0.0],
"fixed operating cost ($)": [0.0, 0.0],
"variable operating cost ($/tonne)": [-15.0, -15.0]
}
}
}
}
}
}
}

View File

@@ -0,0 +1,11 @@
[ Info: Reading s1.json...
[ Info: Building graph...
[ Info: 2 time periods
[ Info: 6 process nodes
[ Info: 8 shipping nodes (plant)
[ Info: 10 shipping nodes (collection)
[ Info: 38 arcs
[ Info: Building optimization model...
[ Info: Optimizing MILP...
[ Info: Re-optimizing with integer variables fixed...
[ Info: Extracting solution...

View File

@@ -5,17 +5,18 @@
module RELOG
include("instance/structs.jl")
include("graph/structs.jl")
include("instance/geodb.jl")
include("graph/dist.jl")
include("graph/build.jl")
include("graph/csv.jl")
include("instance/compress.jl")
include("instance/geodb.jl")
include("instance/parse.jl")
include("instance/validate.jl")
include("model/build.jl")
include("model/getsol.jl")
include("model/resolve.jl")
include("model/solve.jl")
include("reports/plant_emissions.jl")
include("reports/plant_outputs.jl")

View File

@@ -2,14 +2,6 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 2)
end
function build_graph(instance::Instance)::Graph
arcs = []
next_index = 0
@@ -18,7 +10,6 @@ function build_graph(instance::Instance)::Graph
collection_shipping_nodes = ShippingNode[]
name_to_process_node_map = Dict{Tuple{AbstractString,AbstractString},ProcessNode}()
collection_center_to_node = Dict()
process_nodes_by_input_product =
Dict(product => ProcessNode[] for product in instance.products)
@@ -28,7 +19,6 @@ function build_graph(instance::Instance)::Graph
for center in instance.collection_centers
node = ShippingNode(next_index, center, center.product, [], [])
next_index += 1
collection_center_to_node[center] = node
push!(collection_shipping_nodes, node)
end
@@ -52,14 +42,15 @@ function build_graph(instance::Instance)::Graph
# Build arcs from collection centers to plants, and from one plant to another
for source in [collection_shipping_nodes; plant_shipping_nodes]
for dest in process_nodes_by_input_product[source.product]
distance = calculate_distance(
distance = _calculate_distance(
source.location.latitude,
source.location.longitude,
dest.location.latitude,
dest.location.longitude,
instance.distance_metric,
)
values = Dict("distance" => distance)
arc = Arc(length(arcs) + 1, source, dest, values)
arc = Arc(source, dest, values)
push!(source.outgoing_arcs, arc)
push!(dest.incoming_arcs, arc)
push!(arcs, arc)
@@ -72,7 +63,7 @@ function build_graph(instance::Instance)::Graph
for dest in shipping_nodes_by_plant[plant]
weight = plant.output[dest.product]
values = Dict("weight" => weight)
arc = Arc(length(arcs) + 1, source, dest, values)
arc = Arc(source, dest, values)
push!(source.outgoing_arcs, arc)
push!(dest.incoming_arcs, arc)
push!(arcs, arc)
@@ -85,7 +76,6 @@ function build_graph(instance::Instance)::Graph
collection_shipping_nodes,
arcs,
name_to_process_node_map,
collection_center_to_node,
)
end

57
src/graph/dist.jl Normal file
View File

@@ -0,0 +1,57 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
using NearestNeighbors
using DataFrames
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
::EuclideanDistance,
)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(euclidean_distance(x, y) / 1000.0, digits = 3)
end
function _calculate_distance(
source_lat,
source_lon,
dest_lat,
dest_lon,
metric::KnnDrivingDistance,
)::Float64
if metric.tree === nothing
basedir = joinpath(dirname(@__FILE__), "..", "..", "data")
csv_filename = joinpath(basedir, "dist_driving.csv")
# Download pre-computed driving data
if !isfile(csv_filename)
_download_zip(
"https://axavier.org/RELOG/0.6/data/dist_driving_0b9a6ad6.zip",
basedir,
csv_filename,
0x0b9a6ad6,
)
end
# Fit kNN model
df = DataFrame(CSV.File(csv_filename))
coords = Matrix(df[!, [:source_lat, :source_lon, :dest_lat, :dest_lon]])'
metric.ratios = Matrix(df[!, [:ratio]])
metric.tree = KDTree(coords)
end
# Compute Euclidean distance
dist_euclidean =
_calculate_distance(source_lat, source_lon, dest_lat, dest_lon, EuclideanDistance())
# Predict ratio
idxs, _ = knn(metric.tree, [source_lat, source_lon, dest_lat, dest_lon], 5)
ratio_pred = mean(metric.ratios[idxs])
return round(dist_euclidean * ratio_pred, digits = 3)
end

View File

@@ -7,7 +7,6 @@ using Geodesy
abstract type Node end
mutable struct Arc
index::Int
source::Node
dest::Node
values::Dict{String,Float64}
@@ -34,7 +33,6 @@ mutable struct Graph
collection_shipping_nodes::Vector{ShippingNode}
arcs::Vector{Arc}
name_to_process_node_map::Dict{Tuple{AbstractString,AbstractString},ProcessNode}
collection_center_to_node::Dict{CollectionCenter,ShippingNode}
end
function Base.show(io::IO, instance::Graph)

View File

@@ -29,8 +29,6 @@ function _compress(instance::Instance)::Instance
for (emission_name, emission_value) in p.transportation_emissions
p.transportation_emissions[emission_name] = [mean(emission_value)]
end
p.disposal_limit = [maximum(p.disposal_limit) * T]
p.disposal_cost = [mean(p.disposal_cost)]
end
# Compress collection centers
@@ -60,42 +58,3 @@ function _compress(instance::Instance)::Instance
return compressed
end
function _slice(instance::Instance, T::UnitRange)::Instance
sliced = deepcopy(instance)
sliced.time = length(T)
for p in sliced.products
p.transportation_cost = p.transportation_cost[T]
p.transportation_energy = p.transportation_energy[T]
for (emission_name, emission_value) in p.transportation_emissions
p.transportation_emissions[emission_name] = emission_value[T]
end
p.disposal_limit = p.disposal_limit[T]
p.disposal_cost = p.disposal_cost[T]
end
for c in sliced.collection_centers
c.amount = c.amount[T]
end
for plant in sliced.plants
plant.energy = plant.energy[T]
for (emission_name, emission_value) in plant.emissions
plant.emissions[emission_name] = emission_value[T]
end
for s in plant.sizes
s.variable_operating_cost = s.variable_operating_cost[T]
s.opening_cost = s.opening_cost[T]
s.fixed_operating_cost = s.fixed_operating_cost[T]
end
for (prod_name, disp_limit) in plant.disposal_limit
plant.disposal_limit[prod_name] = disp_limit[T]
end
for (prod_name, disp_cost) in plant.disposal_cost
plant.disposal_cost[prod_name] = disp_cost[T]
end
end
return sliced
end

View File

@@ -23,10 +23,23 @@ function parse(json)::Instance
validate(json, Schema(json_schema))
building_period = [1]
if "building period (years)" in keys(json)
building_period = json["building period (years)"]
if "building period (years)" in keys(json["parameters"])
building_period = json["parameters"]["building period (years)"]
end
distance_metric = EuclideanDistance()
if "distance metric" in keys(json["parameters"])
metric_name = json["parameters"]["distance metric"]
if metric_name == "driving"
distance_metric = KnnDrivingDistance()
elseif metric_name == "Euclidean"
# nop
else
error("Unknown distance metric: $metric_name")
end
end
@show distance_metric
plants = Plant[]
products = Product[]
collection_centers = CollectionCenter[]
@@ -37,8 +50,6 @@ function parse(json)::Instance
cost = product_dict["transportation cost (\$/km/tonne)"]
energy = zeros(T)
emissions = Dict()
disposal_limit = zeros(T)
disposal_cost = zeros(T)
if "transportation energy (J/km/tonne)" in keys(product_dict)
energy = product_dict["transportation energy (J/km/tonne)"]
@@ -48,25 +59,7 @@ function parse(json)::Instance
emissions = product_dict["transportation emissions (tonne/km/tonne)"]
end
if "disposal limit (tonne)" in keys(product_dict)
disposal_limit = product_dict["disposal limit (tonne)"]
end
if "disposal cost (\$/tonne)" in keys(product_dict)
disposal_cost = product_dict["disposal cost (\$/tonne)"]
end
prod_centers = []
product = Product(
product_name,
cost,
energy,
emissions,
disposal_limit,
disposal_cost,
prod_centers,
)
product = Product(product_name, cost, energy, emissions)
push!(products, product)
prod_name_to_product[product_name] = product
@@ -86,7 +79,6 @@ function parse(json)::Instance
product,
center_dict["amount (tonne)"],
)
push!(prod_centers, center)
push!(collection_centers, center)
end
end
@@ -197,5 +189,12 @@ function parse(json)::Instance
@info @sprintf("%12d collection centers", length(collection_centers))
@info @sprintf("%12d candidate plant locations", length(plants))
return Instance(T, products, collection_centers, plants, building_period)
return Instance(
T,
products,
collection_centers,
plants,
building_period,
distance_metric,
)
end

View File

@@ -13,9 +13,6 @@ mutable struct Product
transportation_cost::Vector{Float64}
transportation_energy::Vector{Float64}
transportation_emissions::Dict{String,Vector{Float64}}
disposal_limit::Vector{Float64}
disposal_cost::Vector{Float64}
collection_centers::Vector
end
mutable struct CollectionCenter
@@ -51,10 +48,21 @@ mutable struct Plant
storage_cost::Vector{Float64}
end
abstract type DistanceMetric end
Base.@kwdef mutable struct KnnDrivingDistance <: DistanceMetric
tree = nothing
ratios = nothing
end
mutable struct EuclideanDistance <: DistanceMetric end
mutable struct Instance
time::Int64
products::Vector{Product}
collection_centers::Vector{CollectionCenter}
plants::Vector{Plant}
building_period::Vector{Int64}
distance_metric::DistanceMetric
end

View File

@@ -2,346 +2,62 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures, StochasticPrograms
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function build_model(
instance::Instance,
graph::Graph,
optimizer,
)
return build_model(
instance,
[graph],
[1.0],
optimizer=optimizer,
method=:ef,
)
function build_model(instance::Instance, graph::Graph, optimizer)::JuMP.Model
model = Model(optimizer)
model[:instance] = instance
model[:graph] = graph
create_vars!(model)
create_objective_function!(model)
create_shipping_node_constraints!(model)
create_process_node_constraints!(model)
return model
end
function build_model(
instance::Instance,
graphs::Vector{Graph},
probs::Vector{Float64};
optimizer,
method=:ef,
tol=0.1,
)
T = instance.time
@stochastic_model model begin
# Stage 1: Build plants
# =====================================================================
@stage 1 begin
pn = graphs[1].process_nodes
PN = length(pn)
# Var: open_plant
@decision(
model,
open_plant[n in 1:PN, t in 1:T],
binary = true,
)
# Var: is_open
@decision(
model,
is_open[n in 1:PN, t in 1:T],
binary = true,
)
# Objective function
@objective(
model,
Min,
# Opening, fixed operating costs
sum(
pn[n].location.sizes[1].opening_cost[t] * open_plant[n, t] +
pn[n].location.sizes[1].fixed_operating_cost[t] * is_open[n, t]
for n in 1:PN
for t in 1:T
),
)
for t = 1:T, n in 1:PN
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(
model,
is_open[n, t] == is_open[n, t-1] + open_plant[n, t]
)
else
@constraint(model, is_open[n, t] == open_plant[n, t])
end
# Plant can only be opened during building period
if t instance.building_period
@constraint(model, open_plant[n, t] == 0)
end
end
end
# Stage 2: Flows, disposal, capacity & storage
# =====================================================================
@stage 2 begin
@uncertain graph
pn = graph.process_nodes
psn = graph.plant_shipping_nodes
csn = graph.collection_shipping_nodes
arcs = graph.arcs
A = length(arcs)
PN = length(pn)
CSN = length(csn)
PSN = length(psn)
# Var: flow
@recourse(
model,
flow[a in 1:A, t in 1:T],
lower_bound = 0,
)
# Var: plant_dispose
@recourse(
model,
plant_dispose[n in 1:PSN, t in 1:T],
lower_bound = 0,
upper_bound = psn[n].location.disposal_limit[psn[n].product][t],
)
# Var: collection_dispose
@recourse(
model,
collection_dispose[n in 1:CSN, t in 1:T],
lower_bound = 0,
upper_bound = graph.collection_shipping_nodes[n].location.amount[t],
)
# Var: collection_shortfall
@recourse(
model,
collection_shortfall[n in 1:CSN, t in 1:T],
lower_bound = 0,
)
# Var: store
@recourse(
model,
store[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
upper_bound = pn[n].location.storage_limit,
)
# Var: process
@recourse(
model,
process[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
)
# Var: capacity
@recourse(
model,
capacity[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
upper_bound = pn[n].location.sizes[2].capacity,
)
# Var: expansion
@recourse(
model,
expansion[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
upper_bound = (
pn[n].location.sizes[2].capacity -
pn[n].location.sizes[1].capacity
),
)
# Objective function
@objective(
model,
Min,
sum(
# Transportation costs
pn[n].location.input.transportation_cost[t] *
a.values["distance"] *
flow[a.index,t]
for n in 1:PN
for a in pn[n].incoming_arcs
for t in 1:T
) + sum(
# Fixed operating costs (expansion)
slope_fix_oper_cost(pn[n].location, t) * expansion[n, t] +
# Processing costs
pn[n].location.sizes[1].variable_operating_cost[t] * process[n, t] +
# Storage costs
pn[n].location.storage_cost[t] * store[n, t] +
# Expansion costs
(
t < T ? (
(
slope_open(pn[n].location, t) -
slope_open(pn[n].location, t + 1)
) * expansion[n, t]
) : slope_open(pn[n].location, t) * expansion[n, t]
)
for n in 1:PN
for t in 1:T
) + sum(
# Disposal costs (plants)
psn[n].location.disposal_cost[psn[n].product][t] * plant_dispose[n, t]
for n in 1:PSN
for t in 1:T
) + sum(
# Disposal costs (collection centers)
csn[n].location.product.disposal_cost[t] * collection_dispose[n, t]
for n in 1:CSN
for t in 1:T
) + sum(
# Collection shortfall
1e4 * collection_shortfall[n, t]
for n in 1:CSN
for t in 1:T
)
)
# Process node constraints
for t = 1:T, n in 1:PN
node = pn[n]
# Output amount is implied by amount processed
for arc in node.outgoing_arcs
@constraint(
model,
flow[arc.index, t] == arc.values["weight"] * process[n, t]
)
end
# If plant is closed, capacity is zero
@constraint(
model,
capacity[n, t] <= node.location.sizes[2].capacity * is_open[n, t]
)
# If plant is open, capacity is greater than base
@constraint(
model,
capacity[n, t] >= node.location.sizes[1].capacity * is_open[n, t]
)
# Capacity is linked to expansion
@constraint(
model,
capacity[n, t] <=
node.location.sizes[1].capacity + expansion[n, t]
)
# Can only process up to capacity
@constraint(model, process[n, t] <= capacity[n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(model, capacity[n, t] >= capacity[n, t-1])
@constraint(model, expansion[n, t] >= expansion[n, t-1])
end
# Amount received equals amount processed plus stored
store_in = 0
if t > 1
store_in = store[n, t-1]
end
if t == T
@constraint(model, store[n, t] == 0)
end
@constraint(
model,
sum(
flow[arc.index, t]
for arc in node.incoming_arcs
) + store_in == store[n, t] + process[n, t]
)
end
# Material flow at collection shipping nodes
@constraint(
model,
eq_balance_centers[
n in 1:CSN,
t in 1:T,
],
sum(
flow[arc.index, t]
for arc in csn[n].outgoing_arcs
) == csn[n].location.amount[t] - collection_dispose[n, t] - collection_shortfall[n, t]
)
# Material flow at plant shipping nodes
@constraint(
model,
eq_balance_plant[
n in 1:PSN,
t in 1:T,
],
sum(flow[a.index, t] for a in psn[n].incoming_arcs) ==
sum(flow[a.index, t] for a in psn[n].outgoing_arcs) +
plant_dispose[n, t]
)
# Enforce product disposal limit at collection centers
for t in 1:T, prod in instance.products
if isempty(prod.collection_centers)
continue
end
@constraint(
model,
sum(
collection_dispose[n, t]
for n in 1:CSN
if csn[n].product.name == prod.name
) <= prod.disposal_limit[t]
)
end
end
end
ξ = [
@scenario graph = graphs[i] probability = probs[i]
for i in 1:length(graphs)
]
if method == :ef
sp = instantiate(model, ξ; optimizer=optimizer)
elseif method == :lshaped
sp = instantiate(model, ξ; optimizer=LShaped.Optimizer)
set_optimizer_attribute(sp, MasterOptimizer(), optimizer)
set_optimizer_attribute(sp, SubProblemOptimizer(), optimizer)
set_optimizer_attribute(sp, RelativeTolerance(), tol)
else
error("unknown method: $method")
end
return sp
function create_vars!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:flow] =
Dict((a, t) => @variable(model, lower_bound = 0) for a in graph.arcs, t = 1:T)
model[:dispose] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.disposal_limit[n.product][t]
) for n in values(graph.plant_shipping_nodes), t = 1:T
)
model[:store] = Dict(
(n, t) =>
@variable(model, lower_bound = 0, upper_bound = n.location.storage_limit)
for n in values(graph.process_nodes), t = 1:T
)
model[:process] = Dict(
(n, t) => @variable(model, lower_bound = 0) for
n in values(graph.process_nodes), t = 1:T
)
model[:open_plant] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:is_open] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:capacity] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity
) for n in values(graph.process_nodes), t = 1:T
)
model[:expansion] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity - n.location.sizes[1].capacity
) for n in values(graph.process_nodes), t = 1:T
)
end
@@ -362,3 +78,172 @@ function slope_fix_oper_cost(plant, t)
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function create_objective_function!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
obj = AffExpr(0.0)
# Process node costs
for n in values(graph.process_nodes), t = 1:T
# Transportation and variable operating costs
for a in n.incoming_arcs
c = n.location.input.transportation_cost[t] * a.values["distance"]
add_to_expression!(obj, c, model[:flow][a, t])
end
# Opening costs
add_to_expression!(
obj,
n.location.sizes[1].opening_cost[t],
model[:open_plant][n, t],
)
# Fixed operating costs (base)
add_to_expression!(
obj,
n.location.sizes[1].fixed_operating_cost[t],
model[:is_open][n, t],
)
# Fixed operating costs (expansion)
add_to_expression!(obj, slope_fix_oper_cost(n.location, t), model[:expansion][n, t])
# Processing costs
add_to_expression!(
obj,
n.location.sizes[1].variable_operating_cost[t],
model[:process][n, t],
)
# Storage costs
add_to_expression!(obj, n.location.storage_cost[t], model[:store][n, t])
# Expansion costs
if t < T
add_to_expression!(
obj,
slope_open(n.location, t) - slope_open(n.location, t + 1),
model[:expansion][n, t],
)
else
add_to_expression!(obj, slope_open(n.location, t), model[:expansion][n, t])
end
end
# Shipping node costs
for n in values(graph.plant_shipping_nodes), t = 1:T
# Disposal costs
add_to_expression!(
obj,
n.location.disposal_cost[n.product][t],
model[:dispose][n, t],
)
end
@objective(model, Min, obj)
end
function create_shipping_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:eq_balance] = OrderedDict()
for t = 1:T
# Collection centers
for n in graph.collection_shipping_nodes
model[:eq_balance][n, t] = @constraint(
model,
sum(model[:flow][a, t] for a in n.outgoing_arcs) == n.location.amount[t]
)
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(
model,
sum(model[:flow][a, t] for a in n.incoming_arcs) ==
sum(model[:flow][a, t] for a in n.outgoing_arcs) + model[:dispose][n, t]
)
end
end
end
function create_process_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
for t = 1:T, n in graph.process_nodes
input_sum = AffExpr(0.0)
for a in n.incoming_arcs
add_to_expression!(input_sum, 1.0, model[:flow][a, t])
end
# Output amount is implied by amount processed
for a in n.outgoing_arcs
@constraint(
model,
model[:flow][a, t] == a.values["weight"] * model[:process][n, t]
)
end
# If plant is closed, capacity is zero
@constraint(
model,
model[:capacity][n, t] <= n.location.sizes[2].capacity * model[:is_open][n, t]
)
# If plant is open, capacity is greater than base
@constraint(
model,
model[:capacity][n, t] >= n.location.sizes[1].capacity * model[:is_open][n, t]
)
# Capacity is linked to expansion
@constraint(
model,
model[:capacity][n, t] <=
n.location.sizes[1].capacity + model[:expansion][n, t]
)
# Can only process up to capacity
@constraint(model, model[:process][n, t] <= model[:capacity][n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(model, model[:capacity][n, t] >= model[:capacity][n, t-1])
@constraint(model, model[:expansion][n, t] >= model[:expansion][n, t-1])
end
# Amount received equals amount processed plus stored
store_in = 0
if t > 1
store_in = model[:store][n, t-1]
end
if t == T
@constraint(model, model[:store][n, t] == 0)
end
@constraint(
model,
input_sum + store_in == model[:store][n, t] + model[:process][n, t]
)
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(
model,
model[:is_open][n, t] == model[:is_open][n, t-1] + model[:open_plant][n, t]
)
else
@constraint(model, model[:is_open][n, t] == model[:open_plant][n, t])
end
# Plant can only be opened during building period
if t model[:instance].building_period
@constraint(model, model[:open_plant][n, t] == 0)
end
end
end

View File

@@ -2,33 +2,12 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures
function get_solution(
instance,
graph,
model,
scenario_index::Int=1;
marginal_costs=false,
)
value(x) = StochasticPrograms.value(x, scenario_index)
ivalue(x) = StochasticPrograms.value(x)
shadow_price(x) = StochasticPrograms.shadow_price(x, scenario_index)
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function get_solution(model::JuMP.Model; marginal_costs = true)
graph, instance = model[:graph], model[:instance]
T = instance.time
pn = graph.process_nodes
psn = graph.plant_shipping_nodes
csn = graph.collection_shipping_nodes
arcs = graph.arcs
A = length(arcs)
PN = length(pn)
CSN = length(csn)
PSN = length(psn)
flow = model[2, :flow]
output = OrderedDict(
"Plants" => OrderedDict(),
"Products" => OrderedDict(),
@@ -50,52 +29,37 @@ function get_solution(
),
)
pn = graph.process_nodes
psn = graph.plant_shipping_nodes
plant_to_process_node_index = OrderedDict(
pn[n].location => n
for n in 1:length(pn)
)
plant_to_shipping_node_indices = OrderedDict(p => [] for p in instance.plants)
for n in 1:length(psn)
push!(plant_to_shipping_node_indices[psn[n].location], n)
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
plant_to_shipping_nodes = OrderedDict()
for p in instance.plants
plant_to_shipping_nodes[p] = []
for a in plant_to_process_node[p].outgoing_arcs
push!(plant_to_shipping_nodes[p], a.dest)
end
end
# Products
for n in 1:CSN
node = csn[n]
location_dict = OrderedDict{Any,Any}(
"Latitude (deg)" => node.location.latitude,
"Longitude (deg)" => node.location.longitude,
"Amount (tonne)" => node.location.amount,
"Dispose (tonne)" => [
value(model[2, :collection_dispose][n, t])
for t = 1:T
],
"Disposal cost (\$)" => [
value(model[2, :collection_dispose][n, t]) *
node.location.product.disposal_cost[t]
for t = 1:T
]
)
if marginal_costs
location_dict["Marginal cost (\$/tonne)"] = [
round(abs(shadow_price(model[2, :eq_balance_centers][n, t])), digits=2) for t = 1:T
]
if marginal_costs
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any,Any}(
"Marginal cost (\$/tonne)" => [
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for t = 1:T
],
"Latitude (deg)" => n.location.latitude,
"Longitude (deg)" => n.location.longitude,
"Amount (tonne)" => n.location.amount,
)
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
if node.product.name keys(output["Products"])
output["Products"][node.product.name] = OrderedDict()
end
output["Products"][node.product.name][node.location.name] = location_dict
end
# Plants
for plant in instance.plants
skip_plant = true
n = plant_to_process_node_index[plant]
process_node = pn[n]
process_node = plant_to_process_node[plant]
plant_dict = OrderedDict{Any,Any}(
"Input" => OrderedDict(),
"Output" =>
@@ -106,39 +70,39 @@ function get_solution(
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" =>
[value(model[2, :capacity][n, t]) for t = 1:T],
[JuMP.value(model[:capacity][process_node, t]) for t = 1:T],
"Opening cost (\$)" => [
ivalue(model[1, :open_plant][n, t]) *
JuMP.value(model[:open_plant][process_node, t]) *
plant.sizes[1].opening_cost[t] for t = 1:T
],
"Fixed operating cost (\$)" => [
ivalue(model[1, :is_open][n, t]) *
JuMP.value(model[:is_open][process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
value(model[2, :expansion][n, t]) *
JuMP.value(model[:expansion][process_node, t]) *
slope_fix_oper_cost(plant, t) for t = 1:T
],
"Expansion cost (\$)" => [
(
if t == 1
slope_open(plant, t) * value(model[2, :expansion][n, t])
slope_open(plant, t) * JuMP.value(model[:expansion][process_node, t])
else
slope_open(plant, t) * (
value(model[2, :expansion][n, t]) -
value(model[2, :expansion][n, t-1])
JuMP.value(model[:expansion][process_node, t]) -
JuMP.value(model[:expansion][process_node, t-1])
)
end
) for t = 1:T
],
"Process (tonne)" =>
[value(model[2, :process][n, t]) for t = 1:T],
[JuMP.value(model[:process][process_node, t]) for t = 1:T],
"Variable operating cost (\$)" => [
value(model[2, :process][n, t]) *
JuMP.value(model[:process][process_node, t]) *
plant.sizes[1].variable_operating_cost[t] for t = 1:T
],
"Storage (tonne)" =>
[value(model[2, :store][n, t]) for t = 1:T],
[JuMP.value(model[:store][process_node, t]) for t = 1:T],
"Storage cost (\$)" => [
value(model[2, :store][n, t]) * plant.storage_cost[t]
JuMP.value(model[:store][process_node, t]) * plant.storage_cost[t]
for t = 1:T
],
)
@@ -151,7 +115,7 @@ function get_solution(
# Inputs
for a in process_node.incoming_arcs
vals = [value(flow[a.index, t]) for t = 1:T]
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
@@ -209,20 +173,18 @@ function get_solution(
end
# Outputs
for n2 in plant_to_shipping_node_indices[plant]
shipping_node = psn[n2]
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount =
[value(model[2, :plant_dispose][n2, t]) for t = 1:T]
disposal_amount = [JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] =
disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] =
[value(model[2, :plant_dispose][n2, t]) for t = 1:T]
[JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
disposal_dict["Cost (\$)"] = [
disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t] for t = 1:T
@@ -232,7 +194,7 @@ function get_solution(
end
for a in shipping_node.outgoing_arcs
vals = [value(flow[a.index, t]) for t = 1:T]
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end

97
src/model/resolve.jl Normal file
View File

@@ -0,0 +1,97 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
function resolve(model_old, filename::AbstractString; kwargs...)::OrderedDict
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
return resolve(model_old, instance; kwargs...)
end
function resolve(model_old, instance::Instance; optimizer = nothing)::OrderedDict
milp_optimizer = lp_optimizer = optimizer
if optimizer === nothing
milp_optimizer = _get_default_milp_optimizer()
lp_optimizer = _get_default_lp_optimizer()
end
@info "Building new graph..."
graph = build_graph(instance)
_print_graph_stats(instance, graph)
@info "Building new optimization model..."
model_new = RELOG.build_model(instance, graph, milp_optimizer)
@info "Fixing decision variables..."
_fix_plants!(model_old, model_new)
JuMP.set_optimizer(model_new, lp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model_new)
if !has_values(model_new)
@warn("No solution available")
return OrderedDict()
end
@info "Extracting solution..."
solution = get_solution(model_new, marginal_costs = true)
return solution
end
function _fix_plants!(model_old, model_new)::Nothing
T = model_new[:instance].time
# Fix open_plant variables
for ((node_old, t), var_old) in model_old[:open_plant]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:open_plant][node_new, t]
JuMP.unset_binary(var_new)
JuMP.fix(var_new, value_old)
end
# Fix is_open variables
for ((node_old, t), var_old) in model_old[:is_open]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:is_open][node_new, t]
JuMP.unset_binary(var_new)
JuMP.fix(var_new, value_old)
end
# Fix plant capacities
for ((node_old, t), var_old) in model_old[:capacity]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:capacity][node_new, t]
JuMP.delete_lower_bound(var_new)
JuMP.delete_upper_bound(var_new)
JuMP.fix(var_new, value_old)
end
# Fix plant expansion
for ((node_old, t), var_old) in model_old[:expansion]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:expansion][node_new, t]
JuMP.delete_lower_bound(var_new)
JuMP.delete_upper_bound(var_new)
JuMP.fix(var_new, value_old)
end
end

View File

@@ -2,14 +2,14 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, HiGHS, ProgressBars, Printf, DataStructures
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function _get_default_milp_optimizer()
return optimizer_with_attributes(HiGHS.Optimizer)
return optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
end
function _get_default_lp_optimizer()
return optimizer_with_attributes(HiGHS.Optimizer)
return optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
end
@@ -25,81 +25,53 @@ function _print_graph_stats(instance::Instance, graph::Graph)::Nothing
return
end
function solve_stochastic(;
scenarios::Vector{String},
probs::Vector{Float64},
optimizer,
method=:ef,
tol=0.1,
)
@info "Reading instance files..."
instances = [parsefile(sc) for sc in scenarios]
@info "Building graphs..."
graphs = [build_graph(inst) for inst in instances]
@info "Building stochastic model..."
sp = RELOG.build_model(instances[1], graphs, probs; optimizer, method, tol)
@info "Optimizing stochastic model..."
optimize!(sp)
@info "Extracting solution..."
solutions = [
get_solution(instances[i], graphs[i], sp, i)
for i in 1:length(instances)
]
return solutions
end
function solve(
instance::Instance;
optimizer=HiGHS.Optimizer,
marginal_costs=true,
return_model=false
optimizer = nothing,
output = nothing,
marginal_costs = true,
return_model = false,
)
milp_optimizer = lp_optimizer = optimizer
if optimizer == nothing
milp_optimizer = _get_default_milp_optimizer()
lp_optimizer = _get_default_lp_optimizer()
end
@info "Building graph..."
graph = RELOG.build_graph(instance)
_print_graph_stats(instance, graph)
@info "Building model..."
model = RELOG.build_model(instance, [graph], [1.0]; optimizer)
@info "Building optimization model..."
model = RELOG.build_model(instance, graph, milp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model)
@info "Optimizing model..."
optimize!(model)
if !has_values(model)
error("No solution available")
end
@info "Extracting solution..."
solution = get_solution(instance, graph, model, 1)
if marginal_costs
@info "Re-optimizing with integer variables fixed..."
open_plant_vals = value.(model[1, :open_plant])
is_open_vals = value.(model[1, :is_open])
for n in 1:length(graph.process_nodes), t in 1:instance.time
unset_binary(model[1, :open_plant][n, t])
unset_binary(model[1, :is_open][n, t])
fix(
model[1, :open_plant][n, t],
open_plant_vals[n, t]
)
fix(
model[1, :is_open][n, t],
is_open_vals[n, t]
)
end
optimize!(model)
if has_values(model)
@info "Extracting solution..."
solution = get_solution(instance, graph, model, 1, marginal_costs=true)
else
@warn "Error computing marginal costs. Ignoring."
all_vars = JuMP.all_variables(model)
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
JuMP.set_optimizer(model, lp_optimizer)
for var in all_vars
if JuMP.is_binary(var)
JuMP.unset_binary(var)
JuMP.fix(var, vals[var])
end
end
JuMP.optimize!(model)
end
@info "Extracting solution..."
solution = get_solution(model, marginal_costs = marginal_costs)
if output != nothing
write(solution, output)
end
if return_model
@@ -109,13 +81,13 @@ function solve(
end
end
function solve(filename::AbstractString; heuristic=false, kwargs...)
function solve(filename::AbstractString; heuristic = false, kwargs...)
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
if heuristic && instance.time > 1
@info "Solving single-period version..."
compressed = _compress(instance)
csol, model = solve(compressed; marginal_costs=false, return_model=true, kwargs...)
csol = solve(compressed; output = nothing, marginal_costs = false, kwargs...)
@info "Filtering candidate locations..."
selected_pairs = []
for (plant_name, plant_dict) in csol["Plants"]

View File

@@ -5,7 +5,7 @@
using DataFrames
using CSV
function products_report(solution)::DataFrame
function products_report(solution; marginal_costs = true)::DataFrame
df = DataFrame()
df."product name" = String[]
df."location name" = String[]
@@ -14,21 +14,14 @@ function products_report(solution)::DataFrame
df."year" = Int[]
df."amount (tonne)" = Float64[]
df."marginal cost (\$/tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."disposal cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (prod_name, prod_dict) in solution["Products"]
for (location_name, location_dict) in prod_dict
for year = 1:T
marginal_cost = NaN
if "Marginal cost (\$/tonne)" in keys(location_dict)
marginal_cost = location_dict["Marginal cost (\$/tonne)"][year]
end
marginal_cost = location_dict["Marginal cost (\$/tonne)"][year]
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
amount = location_dict["Amount (tonne)"][year]
amount_disposed = location_dict["Dispose (tonne)"][year]
disposal_cost = location_dict["Disposal cost (\$)"][year]
push!(
df,
[
@@ -39,8 +32,6 @@ function products_report(solution)::DataFrame
year,
amount,
marginal_cost,
amount_disposed,
disposal_cost,
],
)
end

View File

@@ -14,6 +14,9 @@
"properties": {
"time horizon (years)": {
"type": "number"
},
"distance metric": {
"type": "string"
}
},
"required": [
@@ -169,12 +172,6 @@
},
"initial amounts": {
"$ref": "#/definitions/InitialAmount"
},
"disposal limit (tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"disposal cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": [

View File

@@ -1,30 +1,15 @@
using PackageCompiler
using TOML
using Logging
Logging.disable_logging(Logging.Info)
using Cbc
using Clp
using Geodesy
using JSON
using JSONSchema
using JuMP
using MathOptInterface
using ProgressBars
mkpath("build")
pkg = [:Cbc, :Clp, :Geodesy, :JSON, :JSONSchema, :JuMP, :MathOptInterface, :ProgressBars]
printstyled("Generating precompilation statements...\n", color = :light_green)
run(`julia --project=. --trace-compile=build/precompile.jl $ARGS`)
printstyled("Finding dependencies...\n", color = :light_green)
project = TOML.parsefile("Project.toml")
manifest = TOML.parsefile("Manifest.toml")
deps = Symbol[]
for dep in keys(project["deps"])
if "path" in keys(manifest[dep][1])
printstyled(" skip $(dep)\n", color = :light_black)
else
println(" add $(dep)")
push!(deps, Symbol(dep))
end
end
printstyled("Building system image...\n", color = :light_green)
create_sysimage(
deps,
precompile_statements_file = "build/precompile.jl",
sysimage_path = "build/sysimage.so",
)
@info "Building system image..."
create_sysimage(pkg, sysimage_path = "build/sysimage.so")

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -1,357 +0,0 @@
{
"parameters": {
"time horizon (years)": 2
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [
0.015,
0.015
],
"transportation energy (J/km/tonne)": [
0.12,
0.11
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"initial amounts": {
"C1": {
"latitude (deg)": 7.0,
"longitude (deg)": 7.0,
"amount (tonne)": [
934.56,
934.56
]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [
198.95,
198.95
]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [
212.97,
212.97
]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [
352.19,
352.19
]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [
510.33,
510.33
]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [
471.66,
471.66
]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [
785.21,
785.21
]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [
706.17,
706.17
]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [
30.08,
30.08
]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [
536.52,
536.52
]
}
},
"disposal limit (tonne)": [
1.0,
1.0
],
"disposal cost ($/tonne)": [
-1000,
-1000
]
},
"P2": {
"transportation cost ($/km/tonne)": [
0.02,
0.02
]
},
"P3": {
"transportation cost ($/km/tonne)": [
0.0125,
0.0125
]
},
"P4": {
"transportation cost ($/km/tonne)": [
0.0175,
0.0175
]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [
0.12,
0.11
],
"emissions (tonne/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
},
"P3": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
}
},
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [
500.0,
500.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
},
"1000.0": {
"opening cost ($)": [
1250.0,
1250.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
}
}
},
"L2": {
"latitude (deg)": 0.5,
"longitude (deg)": 0.5,
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [
1000,
1000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
},
"10000.0": {
"opening cost ($)": [
10000,
10000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [
100.0,
100.0
]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.20,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
}
}
}

View File

@@ -3,38 +3,37 @@
using RELOG
function graph_build_test()
@testset "build_graph" begin
instance = RELOG.parsefile(fixture("instances/s1.json"))
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@testset "build_graph" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1095.62
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1695.364
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end
@test length(graph.arcs) == 38
end

25
test/graph/dist_test.jl Normal file
View File

@@ -0,0 +1,25 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
@testset "KnnDrivingDistance" begin
# Euclidean distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG.EuclideanDistance(),
) == 265.818
# Approximate driving distance between Chicago and Indianapolis
@test RELOG._calculate_distance(
41.866,
-87.656,
39.764,
-86.148,
RELOG.KnnDrivingDistance(),
) == 316.43
end

View File

@@ -3,52 +3,51 @@
using RELOG
function compress_test()
@testset "compress" begin
instance = RELOG.parsefile(fixture("instances/s1.json"))
compressed = RELOG._compress(instance)
@testset "compress" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
compressed = RELOG._compress(instance)
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
end

View File

@@ -4,24 +4,22 @@
using RELOG
function geodb_test()
@testset "geodb_query (2018-us-county)" begin
region = RELOG.geodb_query("2018-us-county:17043")
@test region.centroid.lat == 41.83956
@test region.centroid.lon == -88.08857
@test region.population == 922_921
end
# @testset "geodb_query (2018-us-zcta)" begin
# region = RELOG.geodb_query("2018-us-zcta:60439")
# @test region.centroid.lat == 41.68241
# @test region.centroid.lon == -87.98954
# end
@testset "geodb_query (us-state)" begin
region = RELOG.geodb_query("us-state:IL")
@test region.centroid.lat == 39.73939
@test region.centroid.lon == -89.50414
@test region.population == 12_671_821
end
@testset "geodb_query (2018-us-county)" begin
region = RELOG.geodb_query("2018-us-county:17043")
@test region.centroid.lat == 41.83956
@test region.centroid.lon == -88.08857
@test region.population == 922_921
end
# @testset "geodb_query (2018-us-zcta)" begin
# region = RELOG.geodb_query("2018-us-zcta:60439")
# @test region.centroid.lat == 41.68241
# @test region.centroid.lon == -87.98954
# end
@testset "geodb_query (us-state)" begin
region = RELOG.geodb_query("us-state:IL")
@test region.centroid.lat == 39.73939
@test region.centroid.lon == -89.50414
@test region.population == 12_671_821
end

View File

@@ -3,90 +3,84 @@
using RELOG
function parse_test()
@testset "parse" begin
instance = RELOG.parsefile(fixture("instances/s1.json"))
@testset "parse" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(plants) == 6
@test length(plants) == 6
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
p1 = product_name_to_product["P1"]
@test p1.disposal_limit == [1.0, 1.0]
@test p1.disposal_cost == [-1000.0, -1000.0]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
p2 = product_name_to_product["P2"]
@test p2.disposal_limit == [0.0, 0.0]
@test p2.disposal_cost == [0.0, 0.0]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "parse (geodb)" begin
instance = RELOG.parsefile(fixture("instances/s2.json"))
centers = instance.collection_centers
@test centers[1].name == "C1"
@test centers[1].latitude == 41.83956
@test centers[1].longitude == -88.08857
end
# @testset "parse (invalid)" begin
# @test_throws ErrorException RELOG.parsefile(fixture("s1-wrong-length.json"))
# end
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "parse (geodb)" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s2.json")
centers = instance.collection_centers
@test centers[1].name == "C1"
@test centers[1].latitude == 41.83956
@test centers[1].longitude == -88.08857
end
# @testset "parse (invalid)" begin
# basedir = dirname(@__FILE__)
# @test_throws ErrorException RELOG.parsefile("$basedir/../fixtures/s1-wrong-length.json")
# end

View File

@@ -1,38 +1,38 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, HiGHS, JuMP, Printf, JSON, MathOptInterface.FileFormats
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
function model_build_test()
@testset "build" begin
instance = RELOG.parsefile(fixture("instances/s1.json"))
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, HiGHS.Optimizer)
@testset "build" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
set_optimizer_attribute(model, "logLevel", 0)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
shipping_node_by_loc_and_prod_names = Dict(
(n.location.location_name, n.product.name) => n for n in graph.plant_shipping_nodes
)
shipping_node_by_loc_and_prod_names = Dict(
(n.location.location_name, n.product.name) => n for n in graph.plant_shipping_nodes
)
@test length(model[1, :open_plant]) == 12
@test length(model[2, :flow]) == 76
@test length(model[2, :plant_dispose]) == 16
@test length(model[2, :capacity]) == 12
@test length(model[2, :expansion]) == 12
@test length(model[:flow]) == 76
@test length(model[:dispose]) == 16
@test length(model[:open_plant]) == 12
@test length(model[:capacity]) == 12
@test length(model[:expansion]) == 12
# l1 = process_node_by_location_name["L1"]
# v = model[2, :capacity][l1.index, 1]
# @test lower_bound(v) == 0.0
# @test upper_bound(v) == 1000.0
l1 = process_node_by_location_name["L1"]
v = model[:capacity][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1000.0
# v = model[2, :expansion][l1.index, 1]
# @test lower_bound(v) == 0.0
# @test upper_bound(v) == 750.0
v = model[:expansion][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 750.0
# v = model[2, :plant_dispose][shipping_node_by_loc_and_prod_names["L1", "P2"].index, 1]
# @test lower_bound(v) == 0.0
# @test upper_bound(v) == 1.0
end
v = model[:dispose][shipping_node_by_loc_and_prod_names["L1", "P2"], 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1.0
end

View File

@@ -0,0 +1,11 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "Resolve" begin
# Shoud not crash
filename = "$(pwd())/../instances/s1.json"
solution_old, model_old = RELOG.solve(filename, return_model = true)
solution_new = RELOG.resolve(model_old, filename)
end

View File

@@ -1,85 +1,61 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, JuMP, Printf, JSON, MathOptInterface.FileFormats
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
basedir = dirname(@__FILE__)
function model_solve_test()
@testset "solve (exact)" begin
solution = RELOG.solve(fixture("instances/s1.json"))
@testset "solve (exact)" begin
solution_filename_a = tempname()
solution_filename_b = tempname()
solution = RELOG.solve("$basedir/../../instances/s1.json", output = solution_filename_a)
solution_filename = tempname()
RELOG.write(solution, solution_filename)
@test isfile(solution_filename)
@test isfile(solution_filename_a)
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
RELOG.write(solution, solution_filename_b)
@test isfile(solution_filename_b)
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Products" in keys(solution)
@test "P1" in keys(solution["Products"])
@test "C1" in keys(solution["Products"]["P1"])
@test "Dispose (tonne)" in keys(solution["Products"]["P1"]["C1"])
total_disposal =
sum([loc["Dispose (tonne)"] for loc in values(solution["Products"]["P1"])])
@test total_disposal == [1.0, 1.0]
end
@testset "solve (heuristic)" begin
# Should not crash
solution = RELOG.solve(fixture("instances/s1.json"), heuristic = true)
end
# @testset "solve (infeasible)" begin
# json = JSON.parsefile(fixture("instances/s1.json"))
# for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
# location_dict["amount (tonne)"] *= 1000
# end
# @test_throws ErrorException("No solution available") RELOG.solve(RELOG.parse(json))
# end
@testset "solve (with storage)" begin
basedir = dirname(@__FILE__)
filename = "$basedir/../fixtures/storage.json"
instance = RELOG.parsefile(filename)
@test instance.plants[1].storage_limit == 50.0
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
solution = RELOG.solve(filename)
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
end
@testset "solve (stochastic)" begin
# Should not crash
solutions = RELOG.solve_stochastic(
scenarios=[
fixture("instances/case3_p010_s1.00.json"),
fixture("instances/case3_p010_s1.25.json"),
],
probs=[0.5, 0.5],
optimizer=optimizer_with_attributes(
HiGHS.Optimizer,
"log_to_console" => false,
),
method=:lshaped,
)
end
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
end
@testset "solve (heuristic)" begin
# Should not crash
solution = RELOG.solve("$basedir/../../instances/s1.json", heuristic = true)
end
@testset "solve (infeasible)" begin
json = JSON.parsefile("$basedir/../../instances/s1.json")
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
location_dict["amount (tonne)"] *= 1000
end
@test_throws ErrorException("No solution available") RELOG.solve(RELOG.parse(json))
end
@testset "solve (with storage)" begin
basedir = dirname(@__FILE__)
filename = "$basedir/../fixtures/storage.json"
instance = RELOG.parsefile(filename)
@test instance.plants[1].storage_limit == 50.0
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
solution = RELOG.solve(filename)
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
end

View File

@@ -4,20 +4,16 @@
using RELOG, JSON, GZip
basedir = @__DIR__
function reports_test()
@testset "Reports" begin
@testset "from solve" begin
solution = RELOG.solve(fixture("instances/s1.json"))
tmp_filename = tempname()
# The following should not crash
RELOG.write_plant_emissions_report(solution, tmp_filename)
RELOG.write_plant_outputs_report(solution, tmp_filename)
RELOG.write_plants_report(solution, tmp_filename)
RELOG.write_products_report(solution, tmp_filename)
RELOG.write_transportation_emissions_report(solution, tmp_filename)
RELOG.write_transportation_report(solution, tmp_filename)
end
@testset "Reports" begin
@testset "from solve" begin
solution = RELOG.solve("$(pwd())/../instances/s1.json")
tmp_filename = tempname()
# The following should not crash
RELOG.write_plant_emissions_report(solution, tmp_filename)
RELOG.write_plant_outputs_report(solution, tmp_filename)
RELOG.write_plants_report(solution, tmp_filename)
RELOG.write_products_report(solution, tmp_filename)
RELOG.write_transportation_emissions_report(solution, tmp_filename)
RELOG.write_transportation_report(solution, tmp_filename)
end
end

View File

@@ -2,46 +2,21 @@
# Written by Alinson Santos Xavier <axavier@anl.gov>
using Test
using RELOG
using Revise
includet("instance/compress_test.jl")
includet("instance/geodb_test.jl")
includet("instance/parse_test.jl")
includet("graph/build_test.jl")
includet("model/build_test.jl")
includet("model/solve_test.jl")
includet("reports_test.jl")
function fixture(path)
for candidate in [
"fixtures/$path",
"test/fixtures/$path"
]
if isfile(candidate)
return candidate
end
@testset "RELOG" begin
@testset "Instance" begin
include("instance/compress_test.jl")
include("instance/geodb_test.jl")
include("instance/parse_test.jl")
end
error("Fixture not found: $path")
end
function runtests()
@testset "RELOG" begin
@testset "Instance" begin
compress_test()
geodb_test()
parse_test()
end
@testset "Graph" begin
graph_build_test()
end
@testset "Model" begin
model_build_test()
model_solve_test()
end
reports_test()
@testset "Graph" begin
include("graph/build_test.jl")
include("graph/dist_test.jl")
end
return
@testset "Model" begin
include("model/build_test.jl")
include("model/solve_test.jl")
include("model/resolve_test.jl")
end
include("reports_test.jl")
end
runtests()