46 Commits

Author SHA1 Message Date
505e3a8e1e Update CHANGELOG 2021-07-23 17:42:48 -05:00
d4fa75297f Fix OrderedCollections version 2021-07-23 17:42:29 -05:00
881957d6b5 Implement resolve 2021-07-21 14:53:49 -05:00
86cf7f5bd9 Throw exception for infeasible models 2021-07-21 14:18:10 -05:00
a8c7047e2d Add custom show function for Instance and Graph
Without these functions, Julia 1.5 enters an infinite loop whenever it
tries to generate a stack trace, so any error (such as a missing method)
causes the program to hang, instead of an error message to appear.
2021-07-21 14:11:01 -05:00
099e0fae3a Docs: Minor fixes to what-if analsis section 2021-07-21 14:07:00 -05:00
1b8f392852 Docs: Add description of resolve 2021-07-21 14:07:00 -05:00
7a95aa66f6 Update CHANGELOG 2021-07-21 11:49:54 -05:00
40d28c727a Add products report 2021-07-16 11:25:40 -05:00
a9ac164833 Fix GeoDB download 2021-07-16 10:31:21 -05:00
e244ded51d GH Actions: Add Julia 1.6, remove nightly 2021-07-16 10:18:10 -05:00
7180651cfa Reformat source code 2021-07-16 10:15:41 -05:00
0c9465411f Document GeoDB; remove unused code; minor fixes 2021-07-16 10:13:58 -05:00
658d5ddbdc Add population to region; disable zip codes 2021-07-01 17:14:00 -05:00
399db41f86 Temporarily disable failing test 2021-07-01 16:13:38 -05:00
e407a53ecf Download and join population 2021-07-01 16:10:55 -05:00
33ab4c5f76 GeoDB: Prepare for population 2021-07-01 14:56:08 -05:00
c9391dd299 Update JSONSchema 2021-07-01 14:56:08 -05:00
6c70d9acd5 GeoDB: Add 2018-us-zcta and us-state 2021-07-01 14:56:08 -05:00
339255bf9b Enable geodb in input files 2021-07-01 14:56:08 -05:00
ca187fe78e Implement geodb.jl 2021-07-01 14:56:08 -05:00
c256cd8b75 Update CHANGELOG.md 2021-06-25 06:16:20 -05:00
05d48e2cbf Update tagbot.yml 2021-06-25 06:13:27 -05:00
9446b1921d Add tagbot.yml 2021-06-22 11:10:15 -05:00
1b0cc141bb Remove Manifest.toml from repository 2021-06-22 11:00:11 -05:00
a333ab0b04 Remove unused code and test resources 2021-06-22 10:58:46 -05:00
630ae49d4a Replace Array by Vector 2021-06-22 10:53:40 -05:00
9df416ed75 Split files 2021-06-22 10:50:11 -05:00
849f902562 Reformat code 2021-06-22 10:21:17 -05:00
1990563476 Remove dotdict 2021-06-22 10:20:40 -05:00
7e783c8b91 Replace ManufacturingModel by JuMP.Model 2021-06-22 10:19:31 -05:00
93cc6fbf32 Remove model.eqs 2021-06-22 10:10:48 -05:00
a7938b7260 Remove model.vars 2021-06-22 10:08:01 -05:00
56ef1f7bc2 Update dependencies 2021-06-22 10:07:40 -05:00
b00b24ffbc Reformat source code; set up lint GH Action 2021-06-22 09:49:45 -05:00
823db2838b GH Actions: Run tests daily 2021-06-22 09:41:01 -05:00
7d91ac27d4 Test package on multiple Julia versions 2021-01-06 09:25:39 -06:00
4098057cc1 Update README.md 2021-01-06 09:20:03 -06:00
b91ca9e6cb Re-add RELOG.write function 2021-01-06 09:15:28 -06:00
d870f028c0 Update README.md 2020-12-05 15:42:24 -06:00
a518e3d3d6 Allow plants to store input material for later years 2020-10-29 15:23:40 -05:00
be5e09a4ec Fix crash when generating transportation reports 2020-10-09 09:33:05 -05:00
77cd5871a2 Only use heuristic in multi-period instances 2020-10-06 14:26:26 -05:00
a6846be9eb Implement multi-period heuristic 2020-10-06 14:16:14 -05:00
fe9cacef24 Docs: replace "product" by "product name"; fix incorrect chart 2020-09-21 11:43:56 -05:00
0f60b847dd reports.jl: remove dict restriction
Sometimes solutions are OrderedDicts instead.
2020-09-18 15:44:51 -05:00
59 changed files with 2752 additions and 9073 deletions

27
.github/workflows/lint.yml vendored Normal file
View File

@@ -0,0 +1,27 @@
name: Lint
on:
push:
pull_request:
jobs:
build:
runs-on: ubuntu-latest
steps:
- uses: julia-actions/setup-julia@latest
with:
version: '1'
- uses: actions/checkout@v1
- name: Format check
shell: julia --color=yes {0}
run: |
using Pkg
Pkg.add(PackageSpec(name="JuliaFormatter", version="0.14.4"))
using JuliaFormatter
format("src", verbose=true)
format("test", verbose=true)
out = String(read(Cmd(`git diff`)))
if isempty(out)
exit(0)
end
@error "Some files have not been formatted !!!"
write(stdout, out)
exit(1)

15
.github/workflows/tagbot.yml vendored Normal file
View File

@@ -0,0 +1,15 @@
name: TagBot
on:
issue_comment:
types:
- created
workflow_dispatch:
jobs:
TagBot:
if: github.event_name == 'workflow_dispatch' || github.actor == 'JuliaTagBot'
runs-on: ubuntu-latest
steps:
- uses: JuliaRegistries/TagBot@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}
ssh: ${{ secrets.DOCUMENTER_KEY }}

View File

@@ -1,15 +1,16 @@
name: CI
name: Build & Test
on:
- push
- pull_request
push:
pull_request:
schedule:
- cron: '45 10 * * *'
jobs:
test:
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
version:
- '1.3'
version: ['1.3', '1.4', '1.5', '1.6']
os:
- ubuntu-latest
arch:
@@ -20,5 +21,5 @@ jobs:
with:
version: ${{ matrix.version }}
arch: ${{ matrix.arch }}
- uses: julia-actions/julia-buildpkg@latest
- uses: julia-actions/julia-runtest@latest
- uses: julia-actions/julia-buildpkg@v1
- uses: julia-actions/julia-runtest@v1

4
.gitignore vendored
View File

@@ -8,3 +8,7 @@ instances/*.py
notebooks
.idea
*.lp
Manifest.toml
data
build
benchmark

View File

@@ -1,24 +1,49 @@
# Version 0.4.0 (Sep 18, 2020)
# Changelog
All notable changes to this project will be documented in this file.
- The format is based on [Keep a Changelog][changelog].
- This project adheres to [Semantic Versioning][semver].
- For versions before 1.0, we follow the [Pkg.jl convention][pkjjl]
that `0.a.b` is compatible with `0.a.c`.
[changelog]: https://keepachangelog.com/en/1.0.0/
[semver]: https://semver.org/spec/v2.0.0.html
[pkjjl]: https://pkgdocs.julialang.org/v1/compatibility/#compat-pre-1.0
## [0.5.1] -- 2021-07-23
## Added
- Allow user to specify locations as unique identifiers, instead of latitude and longitude (e.g. `us-state:IL` or `2018-us-county:17043`)
- Add what-if scenarios.
- Add products report.
## [0.5.0] -- 2021-01-06
## Added
- Allow plants to store input material for processing in later years
## [0.4.0] -- 2020-09-18
## Added
- Generate simplified solution reports (CSV)
# Version 0.3.3 (Aug 13, 2020)
## [0.3.3] -- 2020-10-13
## Added
- Add option to write solution to JSON file in RELOG.solve
- Improve error message when instance is infeasible
- Make output file more readable
# Version 0.3.2 (Aug 7, 2020)
## [0.3.2] -- 2020-10-07
## Added
- Add "building period" parameter
# Version 0.3.1 (July 17, 2020)
## [0.3.1] -- 2020-07-17
## Fixed
- Fix expansion cost breakdown
# Version 0.3.0 (June 25, 2020)
## [0.3.0] -- 2020-06-25
## Added
- Track emissions and energy (transportation and plants)
## Changed
- Minor changes to input file format:
- Make all dictionary keys lowercase
- Rename "outputs (tonne)" to "outputs (tonne/tonne)"

View File

@@ -1,15 +1,15 @@
JULIA := julia --color=yes --project=@.
SRC_FILES := $(wildcard src/*.jl test/*.jl)
VERSION := 0.4
VERSION := 0.5
all: docs test
build/sysimage.so: src/sysimage.jl Project.toml Manifest.toml
mkdir -p build
$(JULIA) src/sysimage.jl
build/test.log: $(SRC_FILES) build/sysimage.so
@echo Running tests...
cd test; $(JULIA) --sysimage ../build/sysimage.so runtests.jl | tee ../build/test.log
cd test; $(JULIA) --sysimage ../build/sysimage.so runtests.jl
clean:
rm -rf build/*
@@ -17,6 +17,9 @@ clean:
docs:
mkdocs build -d ../docs/$(VERSION)/
format:
julia -e 'using JuliaFormatter; format(["src", "test"], verbose=true);'
test: build/test.log
test-watch:

View File

@@ -1,441 +0,0 @@
# This file is machine-generated - editing it directly is not advised
[[Base64]]
uuid = "2a0f44e3-6c83-55bd-87e4-b1978d98bd5f"
[[BenchmarkTools]]
deps = ["JSON", "Logging", "Printf", "Statistics", "UUIDs"]
git-tree-sha1 = "9e62e66db34540a0c919d72172cc2f642ac71260"
uuid = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"
version = "0.5.0"
[[BinaryProvider]]
deps = ["Libdl", "Logging", "SHA"]
git-tree-sha1 = "ecdec412a9abc8db54c0efc5548c64dfce072058"
uuid = "b99e7846-7c00-51b0-8f62-c81ae34c0232"
version = "0.5.10"
[[Bzip2_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "03a44490020826950c68005cafb336e5ba08b7e8"
uuid = "6e34b625-4abd-537c-b88f-471c36dfa7a0"
version = "1.0.6+4"
[[CEnum]]
git-tree-sha1 = "215a9aa4a1f23fbd05b92769fdd62559488d70e9"
uuid = "fa961155-64e5-5f13-b03f-caf6b980ea82"
version = "0.4.1"
[[CSV]]
deps = ["CategoricalArrays", "DataFrames", "Dates", "Mmap", "Parsers", "PooledArrays", "SentinelArrays", "Tables", "Unicode"]
git-tree-sha1 = "a390152e6850405a48ca51bd7ca33d11a21d6230"
uuid = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
version = "0.7.7"
[[Calculus]]
deps = ["LinearAlgebra"]
git-tree-sha1 = "f641eb0a4f00c343bbc32346e1217b86f3ce9dad"
uuid = "49dc2e85-a5d0-5ad3-a950-438e2897f1b9"
version = "0.5.1"
[[CategoricalArrays]]
deps = ["DataAPI", "Future", "JSON", "Missings", "Printf", "Statistics", "StructTypes", "Unicode"]
git-tree-sha1 = "2ac27f59196a68070e132b25713f9a5bbc5fa0d2"
uuid = "324d7699-5711-5eae-9e2f-1d82baa6b597"
version = "0.8.3"
[[Cbc]]
deps = ["BinaryProvider", "Libdl", "MathOptInterface", "MathProgBase", "SparseArrays", "Test"]
git-tree-sha1 = "62d80f448b5d77b3f0a59cecf6197aad2a3aa280"
uuid = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
version = "0.6.7"
[[Clp]]
deps = ["BinaryProvider", "CEnum", "Clp_jll", "Libdl", "MathOptInterface", "SparseArrays"]
git-tree-sha1 = "581763750759c1e38df2a35a0b3bdee496a062c7"
uuid = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
version = "0.8.1"
[[Clp_jll]]
deps = ["CoinUtils_jll", "CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Osi_jll", "Pkg"]
git-tree-sha1 = "79263d9383ca89b35f31c33ab5b880536a8413a4"
uuid = "06985876-5285-5a41-9fcb-8948a742cc53"
version = "1.17.6+6"
[[CodecBzip2]]
deps = ["Bzip2_jll", "Libdl", "TranscodingStreams"]
git-tree-sha1 = "2e62a725210ce3c3c2e1a3080190e7ca491f18d7"
uuid = "523fee87-0ab8-5b00-afb7-3ecf72e48cfd"
version = "0.7.2"
[[CodecZlib]]
deps = ["TranscodingStreams", "Zlib_jll"]
git-tree-sha1 = "ded953804d019afa9a3f98981d99b33e3db7b6da"
uuid = "944b1d66-785c-5afd-91f1-9de20f533193"
version = "0.7.0"
[[CoinUtils_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Pkg"]
git-tree-sha1 = "ee1f06ab89337b7f194c29377ab174e752cdf60d"
uuid = "be027038-0da8-5614-b30d-e42594cb92df"
version = "2.11.3+3"
[[CommonSubexpressions]]
deps = ["MacroTools", "Test"]
git-tree-sha1 = "7b8a93dba8af7e3b42fecabf646260105ac373f7"
uuid = "bbf7d656-a473-5ed7-a52c-81e309532950"
version = "0.3.0"
[[Compat]]
deps = ["Base64", "Dates", "DelimitedFiles", "Distributed", "InteractiveUtils", "LibGit2", "Libdl", "LinearAlgebra", "Markdown", "Mmap", "Pkg", "Printf", "REPL", "Random", "SHA", "Serialization", "SharedArrays", "Sockets", "SparseArrays", "Statistics", "Test", "UUIDs", "Unicode"]
git-tree-sha1 = "7c7f4cda0d58ec999189d70f5ee500348c4b4df1"
uuid = "34da2185-b29b-5c13-b0c7-acf172513d20"
version = "3.16.0"
[[CompilerSupportLibraries_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "7c4f882c41faa72118841185afc58a2eb00ef612"
uuid = "e66e0078-7015-5450-92f7-15fbd957f2ae"
version = "0.3.3+0"
[[CoordinateTransformations]]
deps = ["LinearAlgebra", "StaticArrays"]
git-tree-sha1 = "c230b1d94db9fdd073168830437e64b9db627fcb"
uuid = "150eb455-5306-5404-9cee-2592286d6298"
version = "0.6.0"
[[DataAPI]]
git-tree-sha1 = "176e23402d80e7743fc26c19c681bfb11246af32"
uuid = "9a962f9c-6df0-11e9-0e5d-c546b8b5ee8a"
version = "1.3.0"
[[DataFrames]]
deps = ["CategoricalArrays", "Compat", "DataAPI", "Future", "InvertedIndices", "IteratorInterfaceExtensions", "Missings", "PooledArrays", "Printf", "REPL", "Reexport", "SortingAlgorithms", "Statistics", "TableTraits", "Tables", "Unicode"]
git-tree-sha1 = "a7c1c9a6e47a92321bbc9d500dab9b04cc4a6a39"
uuid = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
version = "0.21.7"
[[DataStructures]]
deps = ["InteractiveUtils", "OrderedCollections"]
git-tree-sha1 = "88d48e133e6d3dd68183309877eac74393daa7eb"
uuid = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
version = "0.17.20"
[[DataValueInterfaces]]
git-tree-sha1 = "bfc1187b79289637fa0ef6d4436ebdfe6905cbd6"
uuid = "e2d170a0-9d28-54be-80f0-106bbe20a464"
version = "1.0.0"
[[Dates]]
deps = ["Printf"]
uuid = "ade2ca70-3891-5945-98fb-dc099432e06a"
[[DelimitedFiles]]
deps = ["Mmap"]
uuid = "8bb1440f-4735-579b-a4ab-409b98df4dab"
[[DiffResults]]
deps = ["StaticArrays"]
git-tree-sha1 = "da24935df8e0c6cf28de340b958f6aac88eaa0cc"
uuid = "163ba53b-c6d8-5494-b064-1a9d43ac40c5"
version = "1.0.2"
[[DiffRules]]
deps = ["NaNMath", "Random", "SpecialFunctions"]
git-tree-sha1 = "eb0c34204c8410888844ada5359ac8b96292cfd1"
uuid = "b552c78f-8df3-52c6-915a-8e097449b14b"
version = "1.0.1"
[[Distributed]]
deps = ["Random", "Serialization", "Sockets"]
uuid = "8ba89e20-285c-5b6f-9357-94700520ee1b"
[[ForwardDiff]]
deps = ["CommonSubexpressions", "DiffResults", "DiffRules", "NaNMath", "Random", "SpecialFunctions", "StaticArrays"]
git-tree-sha1 = "1d090099fb82223abc48f7ce176d3f7696ede36d"
uuid = "f6369f11-7733-5829-9624-2563aa707210"
version = "0.10.12"
[[Future]]
deps = ["Random"]
uuid = "9fa8497b-333b-5362-9e8d-4d0656e87820"
[[GZip]]
deps = ["Libdl"]
git-tree-sha1 = "039be665faf0b8ae36e089cd694233f5dee3f7d6"
uuid = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
version = "0.5.1"
[[Geodesy]]
deps = ["CoordinateTransformations", "Dates", "LinearAlgebra", "StaticArrays", "Test"]
git-tree-sha1 = "f80ea86cb88db337a1906e245e495592f0b5cc25"
uuid = "0ef565a4-170c-5f04-8de2-149903a85f3d"
version = "0.5.0"
[[HTTP]]
deps = ["Base64", "Dates", "IniFile", "MbedTLS", "Sockets"]
git-tree-sha1 = "c7ec02c4c6a039a98a15f955462cd7aea5df4508"
uuid = "cd3eb016-35fb-5094-929b-558a96fad6f3"
version = "0.8.19"
[[IniFile]]
deps = ["Test"]
git-tree-sha1 = "098e4d2c533924c921f9f9847274f2ad89e018b8"
uuid = "83e8ac13-25f8-5344-8a64-a9f2b223428f"
version = "0.5.0"
[[InteractiveUtils]]
deps = ["Markdown"]
uuid = "b77e0a4c-d291-57a0-90e8-8db25a27a240"
[[InvertedIndices]]
deps = ["Test"]
git-tree-sha1 = "15732c475062348b0165684ffe28e85ea8396afc"
uuid = "41ab1584-1d38-5bbf-9106-f11c6c58b48f"
version = "1.0.0"
[[IteratorInterfaceExtensions]]
git-tree-sha1 = "a3f24677c21f5bbe9d2a714f95dcd58337fb2856"
uuid = "82899510-4779-5014-852e-03e436cf321d"
version = "1.0.0"
[[JSON]]
deps = ["Dates", "Mmap", "Parsers", "Unicode"]
git-tree-sha1 = "81690084b6198a2e1da36fcfda16eeca9f9f24e4"
uuid = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
version = "0.21.1"
[[JSONSchema]]
deps = ["BinaryProvider", "HTTP", "JSON"]
git-tree-sha1 = "b0a7f9328967df5213691d318a03cf70ea8c76b1"
uuid = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
version = "0.2.0"
[[JuMP]]
deps = ["Calculus", "DataStructures", "ForwardDiff", "LinearAlgebra", "MathOptInterface", "MutableArithmetics", "NaNMath", "Random", "SparseArrays", "Statistics"]
git-tree-sha1 = "cbab42e2e912109d27046aa88f02a283a9abac7c"
uuid = "4076af6c-e467-56ae-b986-b466b2749572"
version = "0.21.3"
[[LibGit2]]
deps = ["Printf"]
uuid = "76f85450-5226-5b5a-8eaa-529ad045b433"
[[Libdl]]
uuid = "8f399da3-3557-5675-b5ff-fb832c97cbdb"
[[LinearAlgebra]]
deps = ["Libdl"]
uuid = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
[[Logging]]
uuid = "56ddb016-857b-54e1-b83d-db4d58db5568"
[[MacroTools]]
deps = ["Markdown", "Random"]
git-tree-sha1 = "f7d2e3f654af75f01ec49be82c231c382214223a"
uuid = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
version = "0.5.5"
[[Markdown]]
deps = ["Base64"]
uuid = "d6f4376e-aef5-505a-96c1-9c027394607a"
[[MathOptInterface]]
deps = ["BenchmarkTools", "CodecBzip2", "CodecZlib", "JSON", "JSONSchema", "LinearAlgebra", "MutableArithmetics", "OrderedCollections", "SparseArrays", "Test", "Unicode"]
git-tree-sha1 = "27f2ef85879b8f1d144266ab44f076ba0dfbd8a1"
uuid = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
version = "0.9.13"
[[MathProgBase]]
deps = ["LinearAlgebra", "SparseArrays"]
git-tree-sha1 = "9abbe463a1e9fc507f12a69e7f29346c2cdc472c"
uuid = "fdba3010-5040-5b88-9595-932c9decdf73"
version = "0.7.8"
[[MbedTLS]]
deps = ["Dates", "MbedTLS_jll", "Random", "Sockets"]
git-tree-sha1 = "426a6978b03a97ceb7ead77775a1da066343ec6e"
uuid = "739be429-bea8-5141-9913-cc70e7f3736d"
version = "1.0.2"
[[MbedTLS_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "c0b1286883cac4e2b617539de41111e0776d02e8"
uuid = "c8ffd9c3-330d-5841-b78e-0817d7145fa1"
version = "2.16.8+0"
[[Missings]]
deps = ["DataAPI"]
git-tree-sha1 = "ed61674a0864832495ffe0a7e889c0da76b0f4c8"
uuid = "e1d29d7a-bbdc-5cf2-9ac0-f12de2c33e28"
version = "0.4.4"
[[Mmap]]
uuid = "a63ad114-7e13-5084-954f-fe012c677804"
[[MutableArithmetics]]
deps = ["LinearAlgebra", "SparseArrays", "Test"]
git-tree-sha1 = "6cf09794783b9de2e662c4e8b60d743021e338d0"
uuid = "d8a4904e-b15c-11e9-3269-09a3773c0cb0"
version = "0.2.10"
[[NaNMath]]
git-tree-sha1 = "c84c576296d0e2fbb3fc134d3e09086b3ea617cd"
uuid = "77ba4419-2d1f-58cd-9bb1-8ffee604a2e3"
version = "0.3.4"
[[OpenBLAS32_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
git-tree-sha1 = "793b33911239d2651c356c823492b58d6490d36a"
uuid = "656ef2d0-ae68-5445-9ca0-591084a874a2"
version = "0.3.9+4"
[[OpenSpecFun_jll]]
deps = ["CompilerSupportLibraries_jll", "Libdl", "Pkg"]
git-tree-sha1 = "d51c416559217d974a1113522d5919235ae67a87"
uuid = "efe28fd5-8261-553b-a9e1-b2916fc3738e"
version = "0.5.3+3"
[[OrderedCollections]]
git-tree-sha1 = "16c08bf5dba06609fe45e30860092d6fa41fde7b"
uuid = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
version = "1.3.1"
[[Osi_jll]]
deps = ["CoinUtils_jll", "CompilerSupportLibraries_jll", "Libdl", "OpenBLAS32_jll", "Pkg"]
git-tree-sha1 = "bd436a97280df40938e66ae8d18e57aceb072856"
uuid = "7da25872-d9ce-5375-a4d3-7a845f58efdd"
version = "0.108.5+3"
[[PackageCompiler]]
deps = ["Libdl", "Pkg", "UUIDs"]
git-tree-sha1 = "98aa9c653e1dc3473bb5050caf8501293db9eee1"
uuid = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
version = "1.2.1"
[[Parsers]]
deps = ["Dates", "Test"]
git-tree-sha1 = "8077624b3c450b15c087944363606a6ba12f925e"
uuid = "69de0a69-1ddd-5017-9359-2bf0b02dc9f0"
version = "1.0.10"
[[Pkg]]
deps = ["Dates", "LibGit2", "Libdl", "Logging", "Markdown", "Printf", "REPL", "Random", "SHA", "UUIDs"]
uuid = "44cfe95a-1eb2-52ea-b672-e2afdf69b78f"
[[PooledArrays]]
deps = ["DataAPI"]
git-tree-sha1 = "b1333d4eced1826e15adbdf01a4ecaccca9d353c"
uuid = "2dfb63ee-cc39-5dd5-95bd-886bf059d720"
version = "0.5.3"
[[Printf]]
deps = ["Unicode"]
uuid = "de0858da-6303-5e67-8744-51eddeeeb8d7"
[[ProgressBars]]
deps = ["Printf"]
git-tree-sha1 = "e66732bbdaad368cfc642cef1f639df5812dc818"
uuid = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
version = "0.6.0"
[[REPL]]
deps = ["InteractiveUtils", "Markdown", "Sockets"]
uuid = "3fa0cd96-eef1-5676-8a61-b3b8758bbffb"
[[Random]]
deps = ["Serialization"]
uuid = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
[[Reexport]]
deps = ["Pkg"]
git-tree-sha1 = "7b1d07f411bc8ddb7977ec7f377b97b158514fe0"
uuid = "189a3867-3050-52da-a836-e630ba90ab69"
version = "0.2.0"
[[SHA]]
uuid = "ea8e919c-243c-51af-8825-aaa63cd721ce"
[[SentinelArrays]]
deps = ["Dates", "Random"]
git-tree-sha1 = "7a74946ace3b34fbb6c10e61b6e250b33d7e758c"
uuid = "91c51154-3ec4-41a3-a24f-3f23e20d615c"
version = "1.2.15"
[[Serialization]]
uuid = "9e88b42a-f829-5b0c-bbe9-9e923198166b"
[[SharedArrays]]
deps = ["Distributed", "Mmap", "Random", "Serialization"]
uuid = "1a1011a3-84de-559e-8e89-a11a2f7dc383"
[[Sockets]]
uuid = "6462fe0b-24de-5631-8697-dd941f90decc"
[[SortingAlgorithms]]
deps = ["DataStructures", "Random", "Test"]
git-tree-sha1 = "03f5898c9959f8115e30bc7226ada7d0df554ddd"
uuid = "a2af1166-a08f-5f64-846c-94a0d3cef48c"
version = "0.3.1"
[[SparseArrays]]
deps = ["LinearAlgebra", "Random"]
uuid = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
[[SpecialFunctions]]
deps = ["OpenSpecFun_jll"]
git-tree-sha1 = "d8d8b8a9f4119829410ecd706da4cc8594a1e020"
uuid = "276daf66-3868-5448-9aa4-cd146d93841b"
version = "0.10.3"
[[StaticArrays]]
deps = ["LinearAlgebra", "Random", "Statistics"]
git-tree-sha1 = "016d1e1a00fabc556473b07161da3d39726ded35"
uuid = "90137ffa-7385-5640-81b9-e52037218182"
version = "0.12.4"
[[Statistics]]
deps = ["LinearAlgebra", "SparseArrays"]
uuid = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
[[StructTypes]]
deps = ["Dates", "UUIDs"]
git-tree-sha1 = "1ed04f622a39d2e5a6747c3a70be040c00333933"
uuid = "856f2bd8-1eba-4b0a-8007-ebc267875bd4"
version = "1.1.0"
[[TableTraits]]
deps = ["IteratorInterfaceExtensions"]
git-tree-sha1 = "b1ad568ba658d8cbb3b892ed5380a6f3e781a81e"
uuid = "3783bdb8-4a98-5b6b-af9a-565f29a5fe9c"
version = "1.0.0"
[[Tables]]
deps = ["DataAPI", "DataValueInterfaces", "IteratorInterfaceExtensions", "LinearAlgebra", "TableTraits", "Test"]
git-tree-sha1 = "b7f762e9820b7fab47544c36f26f54ac59cf8abf"
uuid = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
version = "1.0.5"
[[Test]]
deps = ["Distributed", "InteractiveUtils", "Logging", "Random"]
uuid = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
[[TranscodingStreams]]
deps = ["Random", "Test"]
git-tree-sha1 = "7c53c35547de1c5b9d46a4797cf6d8253807108c"
uuid = "3bb67fe8-82b1-5028-8e26-92a6c54297fa"
version = "0.9.5"
[[UUIDs]]
deps = ["Random", "SHA"]
uuid = "cf7118a7-6976-5b1a-9a39-7adc72f591a4"
[[Unicode]]
uuid = "4ec0a83e-493e-50e2-b9ac-8f72acf5a8f5"
[[Zlib_jll]]
deps = ["Libdl", "Pkg"]
git-tree-sha1 = "fdd89e5ab270ea0f2a0174bd9093e557d06d4bfa"
uuid = "83775a58-1f1d-513f-b197-d71354ab007a"
version = "1.2.11+16"

View File

@@ -1,14 +1,16 @@
name = "RELOG"
uuid = "a2afcdf7-cf04-4913-85f9-c0d81ddf2008"
authors = ["Alinson S Xavier <axavier@anl.gov>"]
version = "0.4.0"
version = "0.5.1"
[deps]
CRC = "44b605c4-b955-5f2b-9b6d-d2bd01d3d205"
CSV = "336ed68f-0bac-5ca0-87d4-7b16caf5d00b"
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
DataFrames = "a93c6f00-e57d-5684-b7b6-d8193f3e46c0"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Downloads = "f43a241f-c20a-4ad4-852c-f6b1247861c6"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"
Geodesy = "0ef565a4-170c-5f04-8de2-149903a85f3d"
JSON = "682c06a0-de6a-54ab-a142-c8b1cf79cde6"
@@ -16,12 +18,17 @@ JSONSchema = "7d188eb4-7ad8-530c-ae41-71a32a6d4692"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MathOptInterface = "b8f27783-ece8-5eb3-8dc8-9495eed66fee"
OrderedCollections = "bac558e1-5e72-5ebc-8fee-abe8a469f55d"
PackageCompiler = "9b87118b-4619-50d2-8e1e-99f35a4d4d9d"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressBars = "49802e3a-d2f1-5c88-81d8-b72133a6f568"
Shapefile = "8e980c4a-a4fe-5da2-b3a7-4b4b0353a2f4"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
ZipFile = "a5390f91-8eb1-5f08-bee0-b1d1ffed6cea"
[compat]
CRC = "4"
CSV = "0.7"
Cbc = "0.6"
Clp = "0.8"
@@ -30,9 +37,12 @@ DataStructures = "0.17"
GZip = "0.5"
Geodesy = "0.5"
JSON = "0.21"
JSONSchema = "0.2"
JSONSchema = "0.3"
JuMP = "0.21"
MathOptInterface = "0.9"
OrderedCollections = "1.4"
PackageCompiler = "1"
ProgressBars = "0.6"
Shapefile = "0.7"
ZipFile = "0.9"
julia = "1"

View File

@@ -1,16 +1,28 @@
RELOG: Reverse Logistics Optimization
=====================================
<h1 align="center">RELOG: Reverse Logistics Optimization</h1>
<p align="center">
<a href="https://github.com/ANL-CEEESA/RELOG/actions">
<img src="https://github.com/ANL-CEEESA/RELOG/workflows/CI/badge.svg">
</a>
<a href="https://doi.org/10.5281/zenodo.4302341">
<img src="https://zenodo.org/badge/DOI/10.5281/zenodo.4302341.svg">
</a>
<a href="https://github.com/ANL-CEEESA/RELOG/releases/">
<img src="https://img.shields.io/github/v/release/ANL-CEEESA/RELOG?include_prereleases&label=pre-release">
</a>
</p>
**RELOG** is a supply chain optimization package focusing on reverse logistics and reverse manufacturing. For example, the package can be used to determine where to build recycling plants, what sizes should they have and which customers should be served by which plants. The package supports customized reverse logistics pipelines, with multiple types of plants, multiple types of product and multiple time periods.
<img src="https://anl-ceeesa.github.io/RELOG/0.4/images/ex_transportation.png" width="1000px"/>
<img src="https://anl-ceeesa.github.io/RELOG/0.5/images/ex_transportation.png" width="1000px"/>
### Documentation
* [Usage](https://anl-ceeesa.github.io/RELOG/0.4/usage)
* [Input and Output Data Formats](https://anl-ceeesa.github.io/RELOG/0.4/format)
* [Simplified Solution Reports](https://anl-ceeesa.github.io/RELOG/0.4/reports)
* [Optimization Model](https://anl-ceeesa.github.io/RELOG/0.4/model)
* [Usage](https://anl-ceeesa.github.io/RELOG/0.5/usage)
* [Input and Output Data Formats](https://anl-ceeesa.github.io/RELOG/0.5/format)
* [Simplified Solution Reports](https://anl-ceeesa.github.io/RELOG/0.5/reports)
* [Optimization Model](https://anl-ceeesa.github.io/RELOG/0.5/model)
### Authors

347
instances/s2.json Normal file
View File

@@ -0,0 +1,347 @@
{
"parameters": {
"time horizon (years)": 2
},
"products": {
"P1": {
"transportation cost ($/km/tonne)": [
0.015,
0.015
],
"transportation energy (J/km/tonne)": [
0.12,
0.11
],
"transportation emissions (tonne/km/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"initial amounts": {
"C1": {
"location": "2018-us-county:17043",
"amount (tonne)": [
934.56,
934.56
]
},
"C2": {
"latitude (deg)": 7.0,
"longitude (deg)": 19.0,
"amount (tonne)": [
198.95,
198.95
]
},
"C3": {
"latitude (deg)": 84.0,
"longitude (deg)": 76.0,
"amount (tonne)": [
212.97,
212.97
]
},
"C4": {
"latitude (deg)": 21.0,
"longitude (deg)": 16.0,
"amount (tonne)": [
352.19,
352.19
]
},
"C5": {
"latitude (deg)": 32.0,
"longitude (deg)": 92.0,
"amount (tonne)": [
510.33,
510.33
]
},
"C6": {
"latitude (deg)": 14.0,
"longitude (deg)": 62.0,
"amount (tonne)": [
471.66,
471.66
]
},
"C7": {
"latitude (deg)": 30.0,
"longitude (deg)": 83.0,
"amount (tonne)": [
785.21,
785.21
]
},
"C8": {
"latitude (deg)": 35.0,
"longitude (deg)": 40.0,
"amount (tonne)": [
706.17,
706.17
]
},
"C9": {
"latitude (deg)": 74.0,
"longitude (deg)": 52.0,
"amount (tonne)": [
30.08,
30.08
]
},
"C10": {
"latitude (deg)": 22.0,
"longitude (deg)": 54.0,
"amount (tonne)": [
536.52,
536.52
]
}
}
},
"P2": {
"transportation cost ($/km/tonne)": [
0.02,
0.02
]
},
"P3": {
"transportation cost ($/km/tonne)": [
0.0125,
0.0125
]
},
"P4": {
"transportation cost ($/km/tonne)": [
0.0175,
0.0175
]
}
},
"plants": {
"F1": {
"input": "P1",
"outputs (tonne/tonne)": {
"P2": 0.2,
"P3": 0.5
},
"energy (GJ/tonne)": [
0.12,
0.11
],
"emissions (tonne/tonne)": {
"CO2": [
0.052,
0.050
],
"CH4": [
0.003,
0.002
]
},
"locations": {
"L1": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"disposal": {
"P2": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
},
"P3": {
"cost ($/tonne)": [
-10.0,
-10.0
],
"limit (tonne)": [
1.0,
1.0
]
}
},
"capacities (tonne)": {
"250.0": {
"opening cost ($)": [
500.0,
500.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
},
"1000.0": {
"opening cost ($)": [
1250.0,
1250.0
],
"fixed operating cost ($)": [
30.0,
30.0
],
"variable operating cost ($/tonne)": [
30.0,
30.0
]
}
}
},
"L2": {
"location": "2018-us-county:17043",
"capacities (tonne)": {
"0.0": {
"opening cost ($)": [
1000,
1000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
},
"10000.0": {
"opening cost ($)": [
10000,
10000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F2": {
"input": "P2",
"outputs (tonne/tonne)": {
"P3": 0.05,
"P4": 0.80
},
"locations": {
"L3": {
"latitude (deg)": 25.0,
"longitude (deg)": 65.0,
"disposal": {
"P3": {
"cost ($/tonne)": [
100.0,
100.0
]
}
},
"capacities (tonne)": {
"1000.0": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
},
"L4": {
"latitude (deg)": 0.75,
"longitude (deg)": 0.20,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
3000,
3000
],
"fixed operating cost ($)": [
50.0,
50.0
],
"variable operating cost ($/tonne)": [
50.0,
50.0
]
}
}
}
}
},
"F3": {
"input": "P4",
"locations": {
"L5": {
"latitude (deg)": 100.0,
"longitude (deg)": 100.0,
"capacities (tonne)": {
"15000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
},
"F4": {
"input": "P3",
"locations": {
"L6": {
"latitude (deg)": 50.0,
"longitude (deg)": 50.0,
"capacities (tonne)": {
"10000": {
"opening cost ($)": [
0.0,
0.0
],
"fixed operating cost ($)": [
0.0,
0.0
],
"variable operating cost ($/tonne)": [
-15.0,
-15.0
]
}
}
}
}
}
}
}

View File

@@ -3,9 +3,26 @@
# Released under the modified BSD license. See COPYING.md for more details.
module RELOG
include("dotdict.jl")
include("instance.jl")
include("graph.jl")
include("model.jl")
include("reports.jl")
include("instance/structs.jl")
include("graph/structs.jl")
include("graph/build.jl")
include("graph/csv.jl")
include("instance/compress.jl")
include("instance/geodb.jl")
include("instance/parse.jl")
include("instance/validate.jl")
include("model/build.jl")
include("model/getsol.jl")
include("model/solve.jl")
include("model/resolve.jl")
include("reports/plant_emissions.jl")
include("reports/plant_outputs.jl")
include("reports/plants.jl")
include("reports/products.jl")
include("reports/tr_emissions.jl")
include("reports/tr.jl")
include("reports/write.jl")
end

View File

@@ -107,7 +107,15 @@ Each type of plant is associated with a set of potential locations where it can
| `latitude (deg)` | The latitude of the location, in degrees.
| `longitude (deg)` | The longitude of the location, in degrees.
| `disposal` | A dictionary describing what products can be disposed locally at the plant.
| `capacities (tonne)` | A dictionary describing what plant sizes are allowed, and their characteristics.
| `storage` | A dictionary describing the plant's storage.
| `capacities (tonne)` | A dictionary describing what plant sizes are allowed, and their characteristics.
The `storage` dictionary should contain the following keys:
| Key | Description
|:------------------------|---------------|
| `cost ($/tonne)` | The cost to store a tonne of input product for one time period. Must be a time series.
| `limit (tonne)` | The maximum amount of input product this plant can have in storage at any given time.
The keys in the `disposal` dictionary should be the names of the products. The values are dictionaries with the following keys:
@@ -151,11 +159,15 @@ The keys in the `capacities (tonne)` dictionary should be the amounts (in tonnes
"limit (tonne)": [1.0, 1.0]
}
},
"storage": {
"cost ($/tonne)": [5.0, 5.3],
"limit (tonne)": 100.0,
},
"capacities (tonne)": {
"100": {
"opening cost ($)": [500, 530],
"fixed operating cost ($)": [300.0, 310.0],
"variable operating cost ($/tonne)": [5.0, 5.2]
"variable operating cost ($/tonne)": [5.0, 5.2],
},
"500": {
"opening cost ($)": [750, 760],
@@ -170,6 +182,38 @@ The keys in the `capacities (tonne)` dictionary should be the amounts (in tonnes
}
```
### Geographic database
Instead of specifying locations using latitudes and longitudes, it is also possible to specify them using unique identifiers, such as the name of a US state, or the county FIPS code. This works anywhere `latitude (deg)` and `longitude (deg)` are expected. For example, instead of:
```json
{
"initial amounts": {
"C1": {
"latitude (deg)": 37.27182,
"longitude (deg)": -119.2704,
"amount (tonne)": [934.56, 934.56]
},
}
}
```
is is possible to write:
```json
{
"initial amounts": {
"C1": {
"location": "us-state:CA",
"amount (tonne)": [934.56, 934.56]
},
}
}
```
Location names follow the format `db:id`, where `db` is the name of the database and `id` is the identifier for a specific location. RELOG currently includes the following databases:
Database | Description | Examples
---------|-------------|----------
`us-state`| List of states of the United States. | `us-state:IL` (State of Illinois)
`2018-us-county` | List of United States counties, as of 2018. IDs are 5-digit FIPS codes. | `2018-us-county:17043` (DuPage county in Illinois)
### Current limitations
* Each plant can only be opened exactly once. After open, the plant remains open until the end of the simulation.
@@ -180,4 +224,3 @@ The keys in the `capacities (tonne)` dictionary should be the amounts (in tonnes
## Output Data Format (JSON)
To be documented.

Binary file not shown.

Before

Width:  |  Height:  |  Size: 31 KiB

After

Width:  |  Height:  |  Size: 29 KiB

View File

@@ -21,9 +21,11 @@ In this page, we describe the precise mathematical optimization model used by RE
* $c^\text{f-base}_{pt}$ - Fixed cost of keeping plant $p$ open during time period $t$ (`$`)
* $c^\text{f-exp}_{pt}$ - Increase in fixed cost for each additional tonne of capacity (`$/tonne`)
* $c^\text{var}_{pt}$ - Variable cost of processing one tonne of input at plant $p$ at time $t$ (`$/tonne`)
* $c^\text{store}_{pt}$ - Cost of storing one tonne of original material at plant $p$ at time $t$ (`$/tonne`)
* $m^\text{min}_p$ - Minimum capacity of plant $p$ (`tonne`)
* $m^\text{max}_p$ - Maximum capacity of plant $p$ (`tonne`)
* $m^\text{disp}_{pmt}$ - Maximum amount of material $m$ that plant $p$ can dispose of during time $t$ (`tonne`)
* $m^\text{store}_p$ - Maximum amount of original material that plant $p$ can store for later processing.
**Products:**
@@ -42,7 +44,9 @@ In this page, we describe the precise mathematical optimization model used by RE
* $w_{pt}$ - Extra capacity (amount above the minimum) added to plant $p$ during time $t$ (`tonne`)
* $x_{pt}$ - Binary variable that equals 1 if plant $p$ is operational at time $t$ (`bool`)
* $y_{lpt}$ - Amount of product sent from location $l$ to plant $p$ during time $t$ (`tonne`)
* $z_{mpt}$ - Amount of material $m$ disposed of by plant $p$ during time $t$ (`tonne`)
* $z^{\text{disp}}_{mpt}$ - Amount of material $m$ disposed of by plant $p$ during time $t$ (`tonne`)
* $z^{\text{store}}_{pt}$ - Amount of original material in storage at plant $p$ by the end of time period $t$ (`tonne`)
* $z^{\text{proc}}_{mpt}$ - Amount of original material processed by plant $p$ during time period $t$ (`tonne`)
### Objective function
@@ -58,16 +62,22 @@ RELOG minimizes the overall capital, production and transportation costs:
c^{\text{exp}}_{pt} w_{pt}
\right] + \\
&
\sum_{t \in T} \sum_{l \in L} \sum_{p \in P} \left[
c^{\text{tr}}_t d_{lp} + c^{\text{var}}_{pt}
\right] y_{lpt} + \\
\sum_{t \in T} \sum_{p \in P} \left[
c^{\text{store}}_{pt} z^{\text{store}}_{pt} +
c^{\text{proc}}_{pt} z^{\text{proc}}_{pt}
\right] + \\
&
\sum_{t \in T} \sum_{l \in L} \sum_{p \in P}
c^{\text{tr}}_t d_{lp} y_{lpt}
\\
&
\sum_{t \in T} \sum_{p \in P} \sum_{m \in M} c^{\text{disp}}_{pmt} z_{pmt}
\end{align*}
In the first line, we have (i) opening costs, if plant starts operating at time $t$, (ii) fixed operating costs, if plant is operational, (iii) additional fixed operating costs coming from expansion performed in all previous time periods up to the current one, and finally (iv) the expansion costs during the current time period.
In the second line, we have the transportation costs and the variable operating costs.
In the third line, we have the disposal costs.
In the second line, we have storage and variable processing costs.
In the third line, we have transportation costs.
In the fourth line, we have the disposal costs.
### Constraints
@@ -78,10 +88,29 @@ In the third line, we have the disposal costs.
& \forall l \in L, t \in T
\end{align}
* Plants have a limited capacity:
* Amount received equals amount processed plus stored. Furthermore, all original material should be processed by the end of the simulation.
\begin{align}
& \sum_{l \in L} y_{lpt} \leq m^\text{min}_p x_p + \sum_{i=1}^t w_p
& \sum_{l \in L} y_{lpt} + z^{\text{store}}_{p,t-1}
= z^{\text{proc}}_{pt} + z^{\text{store}}_{p,t}
& \forall p \in P, t \in T \\
& z^{\text{store}}_{p,0} = 0
& \forall p \in P \\
& z^{\text{store}}_{p,t^{\max}} = 0
& \forall p \in P
\end{align}
* Plants have a limited processing capacity. Furthermore, if a plant is closed, it has zero processing capacity:
\begin{align}
& z^{\text{proc}}_{pt} \leq m^\text{min}_p x_p + \sum_{i=1}^t w_p
& \forall p \in P, t \in T
\end{align}
* Plants have limited storage capacity. Furthermore, if a plant is closed, is has zero storage capacity:
\begin{align}
& z^{\text{store}}_{pt} \leq m^\text{store}_p x_p
& \forall p \in P, t \in T
\end{align}
@@ -92,10 +121,10 @@ In the third line, we have the disposal costs.
& \forall p \in P, t \in T
\end{align}
* Amount of recovered material is proportional to the plant input:
* Amount of recovered material is proportional to amount processed:
\begin{align}
& q_{mpt} = \alpha_{pm} \sum_{l \in L} y_{lpt}
& q_{mpt} = \alpha_{pm} z^{\text{proc}}_{pt}
& \forall m \in M, p \in P, t \in T
\end{align}
@@ -129,50 +158,8 @@ In the third line, we have the disposal costs.
& \forall p \in P, t \in T \\
& y_{lpt} \geq 0
& \forall l \in L, p \in P, t \in T \\
& m^\text{disp}_{mpt} \geq z_{mpt} \geq 0
& z^{\text{store}}_{pt} \geq 0
& p \in P, t \in T \\
& z^{\text{disp}}_{mpt}, z^{\text{proc}}_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T
\end{align}
### Complete optimization model
\begin{align*}
\text{minimize} \;\; &
\sum_{t \in T} \sum_{p \in P} \left[
c^\text{open}_{pt} u_{pt} +
c^\text{f-base}_{pt} x_{pt} +
\sum_{i=1}^t c^\text{f-exp}_{pt} w_{pi} +
c^{\text{exp}}_{pt} w_{pt}
\right] + \\
&
\sum_{t \in T} \sum_{l \in L} \sum_{p \in P} \left[
c^{\text{tr}}_t d_{lp} + c^{\text{var}}_{pt}
\right] y_{lpt} + \\
&
\sum_{t \in T} \sum_{p \in P} \sum_{m \in M} c^{\text{disp}}_{pmt} z_{pmt} \\
\text{subject to } & \sum_{p \in P} y_{lpt} = m^\text{initial}_{lt}
& \forall l \in L, t \in T \\
& \sum_{l \in L} y_{lpt} \leq m^\text{min}_p x_p + \sum_{i=1}^t w_p
& \forall p \in P, t \in T \\
& \sum_{i=1}^t w_p \leq m^\text{max}_p x_p
& \forall p \in P, t \in T \\
& q_{mpt} = \alpha_{pm} \sum_{l \in L} y_{lpt}
& \forall m \in M, p \in P, t \in T \\
& q_{mpt} = z_{mpt}
& \forall m \in M, p \in P, t \in T \\
& x_{pt} = x_{p,t-1} + u_{pt}
& \forall p \in P, t \in T \setminus \{1\} \\
& x_{p,1} = u_{p,1}
& \forall p \in P \\
& q_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T \\
& u_{pt} \in \{0,1\}
& \forall p \in P, t \in T \\
& w_{pt} \geq 0
& \forall p \in P, t \in T \\
& x_{pt} \in \{0,1\}
& \forall p \in P, t \in T \\
& y_{lpt} \geq 0
& \forall l \in L, p \in P, t \in T \\
& m^\text{disp}_{mpt} \geq z_{mpt} \geq 0
& \forall m \in M, p \in P, t \in T
\end{align*}

View File

@@ -6,25 +6,26 @@ In this page, we also illustrate what types of charts and visualizations can be
## Plants report
Report showing plant costs, capacities, energy expenditure and utilization factors.
Generated by `RELOG.write_plants_report(solution, filename)`. For a concrete example, see [nimh_plants.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_plants.csv).
Report showing plant costs, capacities, energy expenditure and utilization factors. Generated by `RELOG.write_plants_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | What year this row corresponds to. This reports includes one row for each year in the simulation.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `latitude (deg)` | Latitude of the plant.
| `longitude (deg)` | Longitude of the plant.
| `capacity (tonne)` | Capacity of the plant at this point in time.
| `amount processed (tonne)` | Amount of input material received by the plant this year.
| `amount received (tonne)` | Amount of input material received by the plant this year.
| `amount processed (tonne)` | Amount of input material processed by the plant this year.
| `amount in storage (tonne)` | Amount of input material in storage at the end of the year.
| `utilization factor (%)` | Amount processed by the plant this year divided by current plant capacity.
| `energy (GJ)` | Amount of energy expended by the plant this year.
| `opening cost ($)` | Amount spent opening the plant. This value is only positive if the plant became operational this year.
| `expansion cost ($)` | Amount spent this year expanding the plant capacity.
| `fixed operating cost ($)` | Amount spent for keeping the plant operational this year.
| `variable operating cost ($)` | Amount spent for processing the input material this year.
| `variable operating cost ($)` | Amount spent this year to process the input material.
| `storage cost ($)` | Amount spent this year on storage.
| `total cost ($)` | Sum of all previous plant costs.
@@ -69,17 +70,15 @@ gp.GeoDataFrame(data, geometry=points).plot(ax=ax);
## Plant outputs report
Report showing amount of products produced, sent and disposed of by each plant, as well as disposal costs.
Generated by `RELOG.write_plant_outputs_report(solution, filename)`. For a concrete example, see [nimh_plant_outputs.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_plant_outputs.csv).
Report showing amount of products produced, sent and disposed of by each plant, as well as disposal costs. Generated by `RELOG.write_plant_outputs_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
| `plant type` | Plant type.
| `location name` | Location name.
| `year` | What year this row corresponds to. This reports includes one row for each year in the simulation.
| `product` | Product being produced.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `product name` | Product being produced.
| `amount produced (tonne)` | Amount of product produced this year.
| `amount sent (tonne)` | Amount of product produced by this plant and sent to another plant for further processing this year.
| `amount disposed (tonne)` | Amount produced produced by this plant and immediately disposed of locally this year.
@@ -107,9 +106,7 @@ sns.barplot(x="amount produced (tonne)",
## Plant emissions report
Report showing amount of emissions produced by each plant.
Generated by `RELOG.write_plant_emissions_report(solution, filename)`. For a concrete example, see [nimh_plant_emissions.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_plant_emissions.csv).
Report showing amount of emissions produced by each plant. Generated by `RELOG.write_plant_emissions_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
@@ -138,11 +135,24 @@ sns.barplot(x="plant type",
<img src="../images/ex_emissions.png" width="500px"/>
## Products report
Report showing primary product amounts, locations and marginal costs. Generated by `RELOG.write_products_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|
| `product name` | Product name.
| `location name` | Name of the collection center.
| `latitude (deg)` | Latitude of the collection center.
| `longitude (deg)` | Longitude of the collection center.
| `year` | What year this row corresponds to. This reports includes one row for each year.
| `amount (tonne)` | Amount of product available at this collection center.
| `marginal cost ($/tonne)` | Cost to process one additional tonne of this product coming from this collection center.
## Transportation report
Report showing amount of product sent from initial locations to plants, and from one plant to another. Includes the distance between each pair of locations, amount-distance shipped, transportation costs and energy expenditure.
Generated by `RELOG.write_transportation_report(solution, filename)`. For a concrete example, see [nimh_transportation.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_transportation.csv).
Report showing amount of product sent from initial locations to plants, and from one plant to another. Includes the distance between each pair of locations, amount-distance shipped, transportation costs and energy expenditure. Generated by `RELOG.write_transportation_report(solution, filename)`.
| Column | Description
@@ -228,9 +238,7 @@ gp.GeoDataFrame(data, geometry=points).plot(ax=ax,
## Transportation emissions report
Report showing emissions for each trip between initial locations and plants, and between pairs of plants.
Generated by `RELOG.write_transportation_emissions_report(solution, filename)`. For a concrete example, see [nimh_transportation_emissions.csv](https://github.com/ANL-CEEESA/RELOG/blob/master/test/fixtures/nimh_transportation_emissions.csv).
Report showing emissions for each trip between initial locations and plants, and between pairs of plants. Generated by `RELOG.write_transportation_emissions_report(solution, filename)`.
| Column | Description
|:--------------------------------------|---------------|

View File

@@ -29,6 +29,8 @@ A **product** is any material that needs to be recycled, any intermediary produc
* The model assumes that some products are initially available at user-specified locations (described by their latitude, longitude and the amount available), while other products only become available during the recycling process.
* Products that are initially available must be sent to a plant for processing during the same time period they became available.
* Transporting products from one location to another incurs a transportation cost (`$/km/tonne`), spends some amount of energy (`J/km/tonne`) and may generate multiple types of emissions (`tonne/tonne`). All these parameters are user-specified and may be product- and time-specific.
A **plant** is a facility that converts one type of product to another. RELOG assumes that each plant receives a single type of product as input and converts this input into multiple types of products. Multiple types of plants, with different inputs, outputs and performance characteristics, may be specified. In the NiMH battery recycling study case, for example, one type of plant could be a *disassembly plant*, which converts *batteries* into *cathode* and *anode*. Another type of plant could be *anode recycling plant*, which converts *anode* into *rare-earth elements* and *scrap metals*.
@@ -37,7 +39,9 @@ A **plant** is a facility that converts one type of product to another. RELOG as
* Plants can be built at user-specified potential locations. Opening a plant incurs a one-time opening cost (`$`) which may be region- and time-specific. Plants also have a limited capacity (in `tonne`), which indicates the maximum amount of input material they are able to process per year. When specifying potential locations for each type of plant, it is also possible to specify the minimum and maximum capacity of the plants that can be built at that particular location. Different plants sizes may have different opening costs and fixed operating costs. After a plant is built, it can be further expanded in the following years, up to its maximum capacity.
* All products that are initially available must be sent to a plant for processing. All products that are generated by a plant can either be sent to another plant for further processing, or disposed of locally for either a profit or a loss (`$/tonne`). To model environmental regulations, it is also possible to specify the maximum amount of each product that can be disposed of at each location.
* Products received by a plant can be either processed immediately or stored for later processing. Plants have a maximum storage capacity (`tonne`). Storage costs (`$/tonne`) can also be specified.
* All products generated by a plant can either be sent to another plant for further processing, or disposed of locally for either a profit or a loss (`$/tonne`). To model environmental regulations, it is also possible to specify the maximum amount of each product that can be disposed of at each location.
All user parameters specified above must be provided to RELOG as a JSON file, which is fully described in the [data format page](format.md).
@@ -62,9 +66,45 @@ RELOG.write_transportation_report(solution, "transportation.csv")
For a complete description of the file formats above, and for a complete list of available reports, see the [data format page](format.md).
## 4. Advanced options
## 4. What-If Analysis
### 4.1 Changing the solver
Fundamentally, RELOG decides when and where to build plants based on a deterministic optimization problem that minimizes costs for a particular input file provided by the user. In practical situations, it may not be possible to perfectly estimate some (or most) entries in this input file in advance, such as costs, demands and emissions. In this situation, it may be interesting to evaluate how well does the facility location plan produced by RELOG work if costs, demands and emissions turn out to be different.
To simplify this what-if analysis, RELOG provides the `resolve` method, which updates a previous solution based on a new scenario, but keeps some of the previous decisions fixed. More precisely, given an optimal solution produced by RELOG and a new input file describing the new scenario, the `resolve` method reoptimizes the supply chain and produces a new solution which still builds the same set of plants as before, in exactly the same locations and with the same capacities, but that may now utilize the plants differently, based on the new data. For example, in the new solution, plants that were previously used at full capacity may now be utilized at half-capacity instead. As another example, regions that were previously served by a certain plant may now be served by a different one.
The following snippet shows how to use the method:
```julia
# Import package
using RELOG
# Optimize for the average scenario
solution_avg, model_avg = RELOG.solve("input_avg.json", return_model=true)
# Write reports for the average scenario
RELOG.write_plants_report(solution_avg, "plants_avg.csv")
RELOG.write_transportation_report(solution_avg, "transportation_avg.csv")
# Re-optimize for the high-demand scenario, keeping plants fixed
solution_high = RELOG.resolve(model_avg, "input_high.json")
# Write reports for the high-demand scenario
RELOG.write_plants_report(solution_high, "plants_high.csv")
RELOG.write_transportation_report(solution_high, "transportation_high.csv")
```
To use the `resolve` method, the new input file should be very similar to the original one. Only the following entries are allowed to change:
- **Products:** Transportation costs, energy, emissions and initial amounts (latitude, longitude and amount).
- **Plants:** Energy and emissions.
- **Plant's location:** Latitude and longitude.
- **Plant's storage:** Cost.
- **Plant's capacity:** Opening cost, fixed operating cost and variable operating cost.
## 5. Advanced options
### 5.1 Changing the solver
By default, RELOG internally uses [Cbc](https://github.com/coin-or/Cbc), an open-source and freely-available Mixed-Integer Linear Programming solver developed by the [COIN-OR Project](https://www.coin-or.org/). For larger-scale test cases, a commercial solver such as Gurobi, CPLEX or XPRESS is recommended. The following snippet shows how to switch from Cbc to Gurobi, for example:
@@ -79,3 +119,20 @@ RELOG.solve("instance.json",
output="solution.json",
optimizer=gurobi)
```
### 5.2 Multi-period heuristics
For large-scale instances, it may be too time-consuming to find an exact optimal solution to the multi-period version of the problem. For these situations, RELOG includes a heuristic solution method, which proceeds as follows:
1. First, RELOG creates a single-period version of the problem, in which most values are replaced by their averages. This single-period problem is typically much easier to solve.
2. After solving the simplified problem, RELOG resolves the multi-period version of the problem, but considering only candidate plant locations that were selected by the optimal solution to the single-period version of the problem. All remaining candidate plant locations are removed.
To solve an instance using this heuristic, use the option `heuristic=true`, as shown below.
```julia
using RELOG
solution = RELOG.solve("/home/user/instance.json",
heuristic=true)
```

View File

@@ -1,68 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
struct DotDict
inner::Dict
end
DotDict() = DotDict(Dict())
function Base.setproperty!(d::DotDict, key::Symbol, value)
setindex!(getfield(d, :inner), value, key)
end
function Base.getproperty(d::DotDict, key::Symbol)
(key == :inner ? getfield(d, :inner) : d.inner[key])
end
function Base.getindex(d::DotDict, key::Int64)
d.inner[Symbol(key)]
end
function Base.getindex(d::DotDict, key::Symbol)
d.inner[key]
end
function Base.keys(d::DotDict)
keys(d.inner)
end
function Base.values(d::DotDict)
values(d.inner)
end
function Base.iterate(d::DotDict)
iterate(values(d.inner))
end
function Base.iterate(d::DotDict, v::Int64)
iterate(values(d.inner), v)
end
function Base.length(d::DotDict)
length(values(d.inner))
end
function Base.show(io::IO, d::DotDict)
print(io, "DotDict with $(length(keys(d.inner))) entries:\n")
count = 0
for k in keys(d.inner)
count += 1
if count > 10
print(io, " ...\n")
break
end
print(io, " :$(k) => $(d.inner[k])\n")
end
end
function recursive_to_dot_dict(el)
if typeof(el) == Dict{String, Any}
return DotDict(Dict(Symbol(k) => recursive_to_dot_dict(el[k]) for k in keys(el)))
else
return el
end
end
export recursive_to_dot_dict

View File

@@ -4,43 +4,12 @@
using Geodesy
abstract type Node
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(distance(x, y) / 1000.0, digits = 2)
end
mutable struct Arc
source::Node
dest::Node
values::Dict{String, Float64}
end
mutable struct ProcessNode <: Node
index::Int
location::Plant
incoming_arcs::Array{Arc}
outgoing_arcs::Array{Arc}
end
mutable struct ShippingNode <: Node
index::Int
location::Union{Plant, CollectionCenter}
product::Product
incoming_arcs::Array{Arc}
outgoing_arcs::Array{Arc}
end
mutable struct Graph
process_nodes::Array{ProcessNode}
plant_shipping_nodes::Array{ShippingNode}
collection_shipping_nodes::Array{ShippingNode}
arcs::Array{Arc}
end
function build_graph(instance::Instance)::Graph
arcs = []
next_index = 0
@@ -48,10 +17,11 @@ function build_graph(instance::Instance)::Graph
plant_shipping_nodes = ShippingNode[]
collection_shipping_nodes = ShippingNode[]
process_nodes_by_input_product = Dict(product => ProcessNode[]
for product in instance.products)
shipping_nodes_by_plant = Dict(plant => []
for plant in instance.plants)
name_to_process_node_map = Dict{Tuple{AbstractString,AbstractString},ProcessNode}()
process_nodes_by_input_product =
Dict(product => ProcessNode[] for product in instance.products)
shipping_nodes_by_plant = Dict(plant => [] for plant in instance.plants)
# Build collection center shipping nodes
for center in instance.collection_centers
@@ -67,6 +37,8 @@ function build_graph(instance::Instance)::Graph
push!(process_nodes, pn)
push!(process_nodes_by_input_product[plant.input], pn)
name_to_process_node_map[(plant.plant_name, plant.location_name)] = pn
for product in keys(plant.output)
sn = ShippingNode(next_index, plant, product, [], [])
next_index += 1
@@ -78,10 +50,12 @@ function build_graph(instance::Instance)::Graph
# Build arcs from collection centers to plants, and from one plant to another
for source in [collection_shipping_nodes; plant_shipping_nodes]
for dest in process_nodes_by_input_product[source.product]
distance = calculate_distance(source.location.latitude,
source.location.longitude,
dest.location.latitude,
dest.location.longitude)
distance = calculate_distance(
source.location.latitude,
source.location.longitude,
dest.location.latitude,
dest.location.longitude,
)
values = Dict("distance" => distance)
arc = Arc(source, dest, values)
push!(source.outgoing_arcs, arc)
@@ -103,24 +77,24 @@ function build_graph(instance::Instance)::Graph
end
end
return Graph(process_nodes,
plant_shipping_nodes,
collection_shipping_nodes,
arcs)
return Graph(
process_nodes,
plant_shipping_nodes,
collection_shipping_nodes,
arcs,
name_to_process_node_map,
)
end
function to_csv(graph::Graph)
result = ""
for a in graph.arcs
result *= "$(a.source.index),$(a.dest.index)\n"
end
return result
end
function calculate_distance(source_lat, source_lon, dest_lat, dest_lon)::Float64
x = LLA(source_lat, source_lon, 0.0)
y = LLA(dest_lat, dest_lon, 0.0)
return round(distance(x, y) / 1000.0, digits=2)
function print_graph_stats(instance::Instance, graph::Graph)::Nothing
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(
" %12d shipping nodes (collection)",
length(graph.collection_shipping_nodes)
)
@info @sprintf(" %12d arcs", length(graph.arcs))
return
end

11
src/graph/csv.jl Normal file
View File

@@ -0,0 +1,11 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function to_csv(graph::Graph)
result = ""
for a in graph.arcs
result *= "$(a.source.index),$(a.dest.index)\n"
end
return result
end

44
src/graph/structs.jl Normal file
View File

@@ -0,0 +1,44 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using Geodesy
abstract type Node end
mutable struct Arc
source::Node
dest::Node
values::Dict{String,Float64}
end
mutable struct ProcessNode <: Node
index::Int
location::Plant
incoming_arcs::Vector{Arc}
outgoing_arcs::Vector{Arc}
end
mutable struct ShippingNode <: Node
index::Int
location::Union{Plant,CollectionCenter}
product::Product
incoming_arcs::Vector{Arc}
outgoing_arcs::Vector{Arc}
end
mutable struct Graph
process_nodes::Vector{ProcessNode}
plant_shipping_nodes::Vector{ShippingNode}
collection_shipping_nodes::Vector{ShippingNode}
arcs::Vector{Arc}
name_to_process_node_map::Dict{Tuple{AbstractString,AbstractString},ProcessNode}
end
function Base.show(io::IO, instance::Graph)
print(io, "RELOG graph with ")
print(io, "$(length(instance.process_nodes)) process nodes, ")
print(io, "$(length(instance.plant_shipping_nodes)) plant shipping nodes, ")
print(io, "$(length(instance.collection_shipping_nodes)) collection shipping nodes, ")
print(io, "$(length(instance.arcs)) arcs")
end

60
src/instance/compress.jl Normal file
View File

@@ -0,0 +1,60 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
"""
_compress(instance::Instance)
Create a single-period instance from a multi-period one. Specifically,
replaces every time-dependent attribute, such as initial_amounts,
by a list with a single element, which is either a sum, an average,
or something else that makes sense to that specific attribute.
"""
function _compress(instance::Instance)::Instance
T = instance.time
compressed = deepcopy(instance)
compressed.time = 1
compressed.building_period = [1]
# Compress products
for p in compressed.products
p.transportation_cost = [mean(p.transportation_cost)]
p.transportation_energy = [mean(p.transportation_energy)]
for (emission_name, emission_value) in p.transportation_emissions
p.transportation_emissions[emission_name] = [mean(emission_value)]
end
end
# Compress collection centers
for c in compressed.collection_centers
c.amount = [maximum(c.amount) * T]
end
# Compress plants
for plant in compressed.plants
plant.energy = [mean(plant.energy)]
for (emission_name, emission_value) in plant.emissions
plant.emissions[emission_name] = [mean(emission_value)]
end
for s in plant.sizes
s.capacity *= T
s.variable_operating_cost = [mean(s.variable_operating_cost)]
s.opening_cost = [s.opening_cost[1]]
s.fixed_operating_cost = [sum(s.fixed_operating_cost)]
end
for (prod_name, disp_limit) in plant.disposal_limit
plant.disposal_limit[prod_name] = [sum(disp_limit)]
end
for (prod_name, disp_cost) in plant.disposal_cost
plant.disposal_cost[prod_name] = [mean(disp_cost)]
end
end
return compressed
end

212
src/instance/geodb.jl Normal file
View File

@@ -0,0 +1,212 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using CRC
using CSV
using DataFrames
using Shapefile
using Statistics
using ZipFile
using ProgressBars
using OrderedCollections
import Downloads: download
import Base: parse
crc32 = crc(CRC_32)
struct GeoPoint
lat::Float64
lon::Float64
end
struct GeoRegion
centroid::GeoPoint
population::Int
GeoRegion(; centroid, population) = new(centroid, population)
end
DB_CACHE = Dict{String,Dict{String,GeoRegion}}()
function centroid(geom::Shapefile.Polygon)::GeoPoint
x_max, x_min, y_max, y_min = -Inf, Inf, -Inf, Inf
for p in geom.points
x_max = max(x_max, p.x)
x_min = min(x_min, p.x)
y_max = max(y_max, p.y)
y_min = min(y_min, p.y)
end
x_center = (x_max + x_min) / 2.0
y_center = (y_max + y_min) / 2.0
return GeoPoint(round(y_center, digits = 5), round(x_center, digits = 5))
end
function _download_file(url, output, expected_crc32)::Nothing
if isfile(output)
return
end
mkpath(dirname(output))
@info "Downloading: $url"
fname = download(url)
actual_crc32 = open(crc32, fname)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
cp(fname, output)
return
end
function _download_zip(url, outputdir, expected_output_file, expected_crc32)::Nothing
if isfile(expected_output_file)
return
end
mkpath(outputdir)
@info "Downloading: $url"
zip_filename = download(url)
actual_crc32 = open(crc32, zip_filename)
expected_crc32 == actual_crc32 || error("CRC32 mismatch")
open(zip_filename) do zip_file
zr = ZipFile.Reader(zip_file)
for file in zr.files
open(joinpath(outputdir, file.name), "w") do output_file
write(output_file, read(file))
end
end
end
return
end
function _geodb_load_gov_census(;
db_name,
extract_cols,
shp_crc32,
shp_filename,
shp_url,
population_url,
population_crc32,
population_col,
population_preprocess,
population_join,
)::Dict{String,GeoRegion}
basedir = joinpath(dirname(@__FILE__), "..", "..", "data", db_name)
csv_filename = "$basedir/locations.csv"
if !isfile(csv_filename)
# Download required files
_download_zip(shp_url, basedir, joinpath(basedir, shp_filename), shp_crc32)
_download_file(population_url, "$basedir/population.csv", population_crc32)
# Read shapefile
@info "Processing: $shp_filename"
table = Shapefile.Table(joinpath(basedir, shp_filename))
geoms = Shapefile.shapes(table)
# Build empty dataframe
df = DataFrame()
cols = extract_cols(table, 1)
for k in keys(cols)
df[!, k] = []
end
df[!, "latitude"] = Float64[]
df[!, "longitude"] = Float64[]
# Add regions to dataframe
for (i, geom) in tqdm(enumerate(geoms))
c = centroid(geom)
cols = extract_cols(table, i)
push!(df, [values(cols)..., c.lat, c.lon])
end
sort!(df)
# Join with population data
population = DataFrame(CSV.File("$basedir/population.csv"))
population_preprocess(population)
population = population[:, [population_join, population_col]]
rename!(population, population_col => "population")
df = leftjoin(df, population, on = population_join)
# Write output
CSV.write(csv_filename, df)
end
if db_name keys(DB_CACHE)
csv = CSV.File(csv_filename)
DB_CACHE[db_name] = Dict(
string(row.id) => GeoRegion(
centroid = GeoPoint(row.latitude, row.longitude),
population = (row.population === missing ? 0 : row.population),
) for row in csv
)
end
return DB_CACHE[db_name]
end
# 2018 US counties
# -----------------------------------------------------------------------------
function _extract_cols_2018_us_county(
table::Shapefile.Table,
i::Int,
)::OrderedDict{String,Any}
return OrderedDict(
"id" => table.STATEFP[i] * table.COUNTYFP[i],
"statefp" => table.STATEFP[i],
"countyfp" => table.COUNTYFP[i],
"name" => table.NAME[i],
)
end
function _population_preprocess_2018_us_county(df)
df[!, "id"] = [@sprintf("%02d%03d", row.STATE, row.COUNTY) for row in eachrow(df)]
end
function _geodb_load_2018_us_county()::Dict{String,GeoRegion}
return _geodb_load_gov_census(
db_name = "2018-us-county",
extract_cols = _extract_cols_2018_us_county,
shp_crc32 = 0x83eaec6d,
shp_filename = "cb_2018_us_county_500k.shp",
shp_url = "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_county_500k.zip",
population_url = "https://www2.census.gov/programs-surveys/popest/datasets/2010-2019/counties/totals/co-est2019-alldata.csv",
population_crc32 = 0xf85b0405,
population_col = "POPESTIMATE2019",
population_join = "id",
population_preprocess = _population_preprocess_2018_us_county,
)
end
# US States
# -----------------------------------------------------------------------------
function _extract_cols_us_state(table::Shapefile.Table, i::Int)::OrderedDict{String,Any}
return OrderedDict(
"id" => table.STUSPS[i],
"statefp" => parse(Int, table.STATEFP[i]),
"name" => table.NAME[i],
)
end
function _population_preprocess_us_state(df)
rename!(df, "STATE" => "statefp")
end
function _geodb_load_us_state()::Dict{String,GeoRegion}
return _geodb_load_gov_census(
db_name = "us-state",
extract_cols = _extract_cols_us_state,
shp_crc32 = 0x9469e5ca,
shp_filename = "cb_2018_us_state_500k.shp",
shp_url = "https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_state_500k.zip",
population_url = "http://www2.census.gov/programs-surveys/popest/datasets/2010-2019/national/totals/nst-est2019-alldata.csv",
population_crc32 = 0x191cc64c,
population_col = "POPESTIMATE2019",
population_join = "statefp",
population_preprocess = _population_preprocess_us_state,
)
end
function geodb_load(db_name::AbstractString)::Dict{String,GeoRegion}
db_name == "2018-us-county" && return _geodb_load_2018_us_county()
db_name == "us-state" && return _geodb_load_us_state()
error("Unknown database: $db_name")
end
function geodb_query(name)::GeoRegion
db_name, id = split(name, ":")
return geodb_load(db_name)[id]
end

View File

@@ -2,84 +2,19 @@
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JSON, JSONSchema, Printf
mutable struct Product
name::String
transportation_cost::Array{Float64}
transportation_energy::Array{Float64}
transportation_emissions::Dict{String, Array{Float64}}
end
mutable struct CollectionCenter
index::Int64
name::String
latitude::Float64
longitude::Float64
product::Product
amount::Array{Float64}
end
mutable struct PlantSize
capacity::Float64
variable_operating_cost::Array{Float64}
fixed_operating_cost::Array{Float64}
opening_cost::Array{Float64}
end
mutable struct Plant
index::Int64
plant_name::String
location_name::String
input::Product
output::Dict{Product, Float64}
latitude::Float64
longitude::Float64
disposal_limit::Dict{Product, Array{Float64}}
disposal_cost::Dict{Product, Array{Float64}}
sizes::Array{PlantSize}
energy::Array{Float64}
emissions::Dict{String, Array{Float64}}
end
mutable struct Instance
time::Int64
products::Array{Product, 1}
collection_centers::Array{CollectionCenter, 1}
plants::Array{Plant, 1}
building_period::Array{Int64}
end
function validate(json, schema)
result = JSONSchema.validate(json, schema)
if result !== nothing
if result isa JSONSchema.SingleIssue
path = join(result.path, "")
if length(path) == 0
path = "root"
end
msg = "$(result.msg) in $(path)"
else
msg = convert(String, result)
end
throw(msg)
end
end
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
function parsefile(path::String)::Instance
return RELOG.parse(JSON.parsefile(path))
end
function parse(json::Dict)::Instance
function parse(json)::Instance
basedir = dirname(@__FILE__)
json_schema = JSON.parsefile("$basedir/schemas/input.json")
json_schema = JSON.parsefile("$basedir/../schemas/input.json")
validate(json, Schema(json_schema))
T = json["parameters"]["time horizon (years)"]
@@ -95,7 +30,7 @@ function parse(json::Dict)::Instance
plants = Plant[]
products = Product[]
collection_centers = CollectionCenter[]
prod_name_to_product = Dict{String, Product}()
prod_name_to_product = Dict{String,Product}()
# Create products
for (product_name, product_dict) in json["products"]
@@ -118,12 +53,19 @@ function parse(json::Dict)::Instance
# Create collection centers
if "initial amounts" in keys(product_dict)
for (center_name, center_dict) in product_dict["initial amounts"]
center = CollectionCenter(length(collection_centers) + 1,
center_name,
center_dict["latitude (deg)"],
center_dict["longitude (deg)"],
product,
center_dict["amount (tonne)"])
if "location" in keys(center_dict)
region = geodb_query(center_dict["location"])
center_dict["latitude (deg)"] = region.centroid.lat
center_dict["longitude (deg)"] = region.centroid.lon
end
center = CollectionCenter(
length(collection_centers) + 1,
center_name,
center_dict["latitude (deg)"],
center_dict["longitude (deg)"],
product,
center_dict["amount (tonne)"],
)
push!(collection_centers, center)
end
end
@@ -136,9 +78,10 @@ function parse(json::Dict)::Instance
# Plant outputs
if "outputs (tonne/tonne)" in keys(plant_dict)
output = Dict(prod_name_to_product[key] => value
for (key, value) in plant_dict["outputs (tonne/tonne)"]
if value > 0)
output = Dict(
prod_name_to_product[key] => value for
(key, value) in plant_dict["outputs (tonne/tonne)"] if value > 0
)
end
energy = zeros(T)
@@ -154,31 +97,53 @@ function parse(json::Dict)::Instance
for (location_name, location_dict) in plant_dict["locations"]
sizes = PlantSize[]
disposal_limit = Dict(p => [0.0 for t in 1:T] for p in keys(output))
disposal_cost = Dict(p => [0.0 for t in 1:T] for p in keys(output))
disposal_limit = Dict(p => [0.0 for t = 1:T] for p in keys(output))
disposal_cost = Dict(p => [0.0 for t = 1:T] for p in keys(output))
# GeoDB
if "location" in keys(location_dict)
region = geodb_query(location_dict["location"])
location_dict["latitude (deg)"] = region.centroid.lat
location_dict["longitude (deg)"] = region.centroid.lon
end
# Disposal
if "disposal" in keys(location_dict)
for (product_name, disposal_dict) in location_dict["disposal"]
limit = [1e8 for t in 1:T]
limit = [1e8 for t = 1:T]
if "limit (tonne)" in keys(disposal_dict)
limit = disposal_dict["limit (tonne)"]
limit = disposal_dict["limit (tonne)"]
end
disposal_limit[prod_name_to_product[product_name]] = limit
disposal_cost[prod_name_to_product[product_name]] = disposal_dict["cost (\$/tonne)"]
disposal_cost[prod_name_to_product[product_name]] =
disposal_dict["cost (\$/tonne)"]
end
end
# Capacities
for (capacity_name, capacity_dict) in location_dict["capacities (tonne)"]
push!(sizes, PlantSize(Base.parse(Float64, capacity_name),
capacity_dict["variable operating cost (\$/tonne)"],
capacity_dict["fixed operating cost (\$)"],
capacity_dict["opening cost (\$)"]))
push!(
sizes,
PlantSize(
Base.parse(Float64, capacity_name),
capacity_dict["variable operating cost (\$/tonne)"],
capacity_dict["fixed operating cost (\$)"],
capacity_dict["opening cost (\$)"],
),
)
end
length(sizes) > 1 || push!(sizes, sizes[1])
length(sizes) > 1 || push!(sizes, sizes[1])
sort!(sizes, by = x -> x.capacity)
# Storage
storage_limit = 0
storage_cost = zeros(T)
if "storage" in keys(location_dict)
storage_dict = location_dict["storage"]
storage_limit = storage_dict["limit (tonne)"]
storage_cost = storage_dict["cost (\$/tonne)"]
end
# Validation: Capacities
if length(sizes) != 2
throw("At most two capacities are supported")
@@ -187,18 +152,22 @@ function parse(json::Dict)::Instance
throw("Variable operating costs must be the same for all capacities")
end
plant = Plant(length(plants) + 1,
plant_name,
location_name,
input,
output,
location_dict["latitude (deg)"],
location_dict["longitude (deg)"],
disposal_limit,
disposal_cost,
sizes,
energy,
emissions)
plant = Plant(
length(plants) + 1,
plant_name,
location_name,
input,
output,
location_dict["latitude (deg)"],
location_dict["longitude (deg)"],
disposal_limit,
disposal_cost,
sizes,
energy,
emissions,
storage_limit,
storage_cost,
)
push!(plants, plant)
end

57
src/instance/structs.jl Normal file
View File

@@ -0,0 +1,57 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
mutable struct Product
name::String
transportation_cost::Vector{Float64}
transportation_energy::Vector{Float64}
transportation_emissions::Dict{String,Vector{Float64}}
end
mutable struct CollectionCenter
index::Int64
name::String
latitude::Float64
longitude::Float64
product::Product
amount::Vector{Float64}
end
mutable struct PlantSize
capacity::Float64
variable_operating_cost::Vector{Float64}
fixed_operating_cost::Vector{Float64}
opening_cost::Vector{Float64}
end
mutable struct Plant
index::Int64
plant_name::String
location_name::String
input::Product
output::Dict{Product,Float64}
latitude::Float64
longitude::Float64
disposal_limit::Dict{Product,Vector{Float64}}
disposal_cost::Dict{Product,Vector{Float64}}
sizes::Vector{PlantSize}
energy::Vector{Float64}
emissions::Dict{String,Vector{Float64}}
storage_limit::Float64
storage_cost::Vector{Float64}
end
mutable struct Instance
time::Int64
products::Vector{Product}
collection_centers::Vector{CollectionCenter}
plants::Vector{Plant}
building_period::Vector{Int64}
end

25
src/instance/validate.jl Normal file
View File

@@ -0,0 +1,25 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataStructures
using JSON
using JSONSchema
using Printf
using Statistics
function validate(json, schema)
result = JSONSchema.validate(json, schema)
if result !== nothing
if result isa JSONSchema.SingleIssue
path = join(result.path, "")
if length(path) == 0
path = "root"
end
msg = "$(result.msg) in $(path)"
else
msg = convert(String, result)
end
throw(msg)
end
end

View File

@@ -1,449 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
mutable struct ManufacturingModel
mip::JuMP.Model
vars::DotDict
eqs::DotDict
instance::Instance
graph::Graph
end
function build_model(instance::Instance, graph::Graph, optimizer)::ManufacturingModel
model = ManufacturingModel(Model(optimizer), DotDict(), DotDict(), instance, graph)
create_vars!(model)
create_objective_function!(model)
create_shipping_node_constraints!(model)
create_process_node_constraints!(model)
return model
end
function create_vars!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
vars.flow = Dict((a, t) => @variable(mip, lower_bound=0)
for a in graph.arcs, t in 1:T)
vars.dispose = Dict((n, t) => @variable(mip,
lower_bound=0,
upper_bound=n.location.disposal_limit[n.product][t])
for n in values(graph.plant_shipping_nodes), t in 1:T)
vars.open_plant = Dict((n, t) => @variable(mip, binary=true)
for n in values(graph.process_nodes), t in 1:T)
vars.is_open = Dict((n, t) => @variable(mip, binary=true)
for n in values(graph.process_nodes), t in 1:T)
vars.capacity = Dict((n, t) => @variable(mip,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity)
for n in values(graph.process_nodes), t in 1:T)
vars.expansion = Dict((n, t) => @variable(mip,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity -
n.location.sizes[1].capacity)
for n in values(graph.process_nodes), t in 1:T)
end
function slope_open(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function slope_fix_oper_cost(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function create_objective_function!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
obj = AffExpr(0.0)
# Process node costs
for n in values(graph.process_nodes), t in 1:T
# Transportation and variable operating costs
for a in n.incoming_arcs
c = n.location.input.transportation_cost[t] * a.values["distance"]
c += n.location.sizes[1].variable_operating_cost[t]
add_to_expression!(obj, c, vars.flow[a, t])
end
# Opening costs
add_to_expression!(obj,
n.location.sizes[1].opening_cost[t],
vars.open_plant[n, t])
# Fixed operating costs (base)
add_to_expression!(obj,
n.location.sizes[1].fixed_operating_cost[t],
vars.is_open[n, t])
# Fixed operating costs (expansion)
add_to_expression!(obj,
slope_fix_oper_cost(n.location, t),
vars.expansion[n, t])
# Expansion costs
if t < T
add_to_expression!(obj,
slope_open(n.location, t) - slope_open(n.location, t + 1),
vars.expansion[n, t])
else
add_to_expression!(obj,
slope_open(n.location, t),
vars.expansion[n, t])
end
end
# Disposal costs
for n in values(graph.plant_shipping_nodes), t in 1:T
add_to_expression!(obj, n.location.disposal_cost[n.product][t], vars.dispose[n, t])
end
@objective(mip, Min, obj)
end
function create_shipping_node_constraints!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
eqs = model.eqs
eqs.balance = OrderedDict()
for t in 1:T
# Collection centers
for n in graph.collection_shipping_nodes
eqs.balance[n, t] = @constraint(mip,
sum(vars.flow[a, t] for a in n.outgoing_arcs)
== n.location.amount[t])
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(mip,
sum(vars.flow[a, t] for a in n.incoming_arcs) ==
sum(vars.flow[a, t] for a in n.outgoing_arcs) + vars.dispose[n, t])
end
end
end
function create_process_node_constraints!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
for t in 1:T, n in graph.process_nodes
# Output amount is implied by input amount
input_sum = AffExpr(0.0)
for a in n.incoming_arcs
add_to_expression!(input_sum, 1.0, vars.flow[a, t])
end
for a in n.outgoing_arcs
@constraint(mip, vars.flow[a, t] == a.values["weight"] * input_sum)
end
# If plant is closed, capacity is zero
@constraint(mip, vars.capacity[n, t] <= n.location.sizes[2].capacity * vars.is_open[n, t])
# If plant is open, capacity is greater than base
@constraint(mip, vars.capacity[n, t] >= n.location.sizes[1].capacity * vars.is_open[n, t])
# Capacity is linked to expansion
@constraint(mip, vars.capacity[n, t] <= n.location.sizes[1].capacity + vars.expansion[n, t])
# Input sum must be smaller than capacity
@constraint(mip, input_sum <= vars.capacity[n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(mip, vars.capacity[n, t] >= vars.capacity[n, t-1])
@constraint(mip, vars.expansion[n, t] >= vars.expansion[n, t-1])
end
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(mip, vars.is_open[n, t] == vars.is_open[n, t-1] + vars.open_plant[n, t])
else
@constraint(mip, vars.is_open[n, t] == vars.open_plant[n, t])
end
# Plant can only be opened during building period
if t model.instance.building_period
@constraint(mip, vars.open_plant[n, t] == 0)
end
end
end
default_milp_optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
default_lp_optimizer = optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
function solve(instance::Instance;
optimizer=nothing,
output=nothing)
milp_optimizer = lp_optimizer = optimizer
if optimizer == nothing
milp_optimizer = default_milp_optimizer
lp_optimizer = default_lp_optimizer
end
@info "Building graph..."
graph = RELOG.build_graph(instance)
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(" %12d shipping nodes (collection)", length(graph.collection_shipping_nodes))
@info @sprintf(" %12d arcs", length(graph.arcs))
@info "Building optimization model..."
model = RELOG.build_model(instance, graph, milp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model.mip)
if !has_values(model.mip)
@warn "No solution available"
return OrderedDict()
end
@info "Re-optimizing with integer variables fixed..."
all_vars = JuMP.all_variables(model.mip)
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
JuMP.set_optimizer(model.mip, lp_optimizer)
for var in all_vars
if JuMP.is_binary(var)
JuMP.unset_binary(var)
JuMP.fix(var, vals[var])
end
end
JuMP.optimize!(model.mip)
@info "Extracting solution..."
solution = get_solution(model)
if output != nothing
@info "Writing solution: $output"
open(output, "w") do file
JSON.print(file, solution, 2)
end
end
return solution
end
function solve(filename::String; kwargs...)
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
return solve(instance; kwargs...)
end
function get_solution(model::ManufacturingModel)
mip, vars, eqs, graph, instance = model.mip, model.vars, model.eqs, model.graph, model.instance
T = instance.time
output = OrderedDict(
"Plants" => OrderedDict(),
"Products" => OrderedDict(),
"Costs" => OrderedDict(
"Fixed operating (\$)" => zeros(T),
"Variable operating (\$)" => zeros(T),
"Opening (\$)" => zeros(T),
"Transportation (\$)" => zeros(T),
"Disposal (\$)" => zeros(T),
"Expansion (\$)" => zeros(T),
"Total (\$)" => zeros(T),
),
"Energy" => OrderedDict(
"Plants (GJ)" => zeros(T),
"Transportation (GJ)" => zeros(T),
),
"Emissions" => OrderedDict(
"Plants (tonne)" => OrderedDict(),
"Transportation (tonne)" => OrderedDict(),
),
)
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
plant_to_shipping_nodes = OrderedDict()
for p in instance.plants
plant_to_shipping_nodes[p] = []
for a in plant_to_process_node[p].outgoing_arcs
push!(plant_to_shipping_nodes[p], a.dest)
end
end
# Products
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any, Any}(
"Marginal cost (\$/tonne)" => [round(abs(JuMP.shadow_price(eqs.balance[n, t])), digits=2)
for t in 1:T],
)
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
# Plants
for plant in instance.plants
skip_plant = true
process_node = plant_to_process_node[plant]
plant_dict = OrderedDict{Any, Any}(
"Input" => OrderedDict(),
"Output" => OrderedDict(
"Send" => OrderedDict(),
"Dispose" => OrderedDict(),
),
"Input product" => plant.input.name,
"Total input (tonne)" => [0.0 for t in 1:T],
"Total output" => OrderedDict(),
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" => [JuMP.value(vars.capacity[process_node, t])
for t in 1:T],
"Opening cost (\$)" => [JuMP.value(vars.open_plant[process_node, t]) *
plant.sizes[1].opening_cost[t]
for t in 1:T],
"Fixed operating cost (\$)" => [JuMP.value(vars.is_open[process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(vars.expansion[process_node, t]) *
slope_fix_oper_cost(plant, t)
for t in 1:T],
"Expansion cost (\$)" => [(if t == 1
slope_open(plant, t) * JuMP.value(vars.expansion[process_node, t])
else
slope_open(plant, t) * (
JuMP.value(vars.expansion[process_node, t]) -
JuMP.value(vars.expansion[process_node, t - 1])
)
end)
for t in 1:T],
)
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
# Inputs
for a in process_node.incoming_arcs
vals = [JuMP.value(vars.flow[a, t]) for t in 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict{Any, Any}(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.source.location.latitude,
"Longitude (deg)" => a.source.location.longitude,
"Transportation cost (\$)" => a.source.product.transportation_cost .* vals .* a.values["distance"],
"Variable operating cost (\$)" => plant.sizes[1].variable_operating_cost .* vals,
"Transportation energy (J)" => vals .* a.values["distance"] .* a.source.product.transportation_energy,
"Emissions (tonne)" => OrderedDict(),
)
emissions_dict = output["Emissions"]["Transportation (tonne)"]
for (em_name, em_values) in a.source.product.transportation_emissions
dict["Emissions (tonne)"][em_name] = em_values .* dict["Amount (tonne)"] .* a.values["distance"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
end
if a.source.location isa CollectionCenter
plant_name = "Origin"
location_name = a.source.location.name
else
plant_name = a.source.location.plant_name
location_name = a.source.location.location_name
end
if plant_name keys(plant_dict["Input"])
plant_dict["Input"][plant_name] = OrderedDict()
end
plant_dict["Input"][plant_name][location_name] = dict
plant_dict["Total input (tonne)"] += vals
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
output["Costs"]["Variable operating (\$)"] += dict["Variable operating cost (\$)"]
output["Energy"]["Transportation (GJ)"] += dict["Transportation energy (J)"] / 1e9
end
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
plant_dict["Emissions (tonne)"] = OrderedDict()
emissions_dict = output["Emissions"]["Plants (tonne)"]
for (em_name, em_values) in plant.emissions
plant_dict["Emissions (tonne)"][em_name] = em_values .* plant_dict["Total input (tonne)"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
end
# Outputs
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount = [JuMP.value(vars.dispose[shipping_node, t]) for t in 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] = disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] = [JuMP.value(model.vars.dispose[shipping_node, t])
for t in 1:T]
disposal_dict["Cost (\$)"] = [disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t]
for t in 1:T]
plant_dict["Total output"][product_name] += disposal_amount
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
end
for a in shipping_node.outgoing_arcs
vals = [JuMP.value(vars.flow[a, t]) for t in 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.dest.location.latitude,
"Longitude (deg)" => a.dest.location.longitude,
)
if a.dest.location.plant_name keys(product_dict)
product_dict[a.dest.location.plant_name] = OrderedDict()
end
product_dict[a.dest.location.plant_name][a.dest.location.location_name] = dict
plant_dict["Total output"][product_name] += vals
end
end
if !skip_plant
if plant.plant_name keys(output["Plants"])
output["Plants"][plant.plant_name] = OrderedDict()
end
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
end
end
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
return output
end

249
src/model/build.jl Normal file
View File

@@ -0,0 +1,249 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function build_model(instance::Instance, graph::Graph, optimizer)::JuMP.Model
model = Model(optimizer)
model[:instance] = instance
model[:graph] = graph
create_vars!(model)
create_objective_function!(model)
create_shipping_node_constraints!(model)
create_process_node_constraints!(model)
return model
end
function create_vars!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:flow] =
Dict((a, t) => @variable(model, lower_bound = 0) for a in graph.arcs, t = 1:T)
model[:dispose] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.disposal_limit[n.product][t]
) for n in values(graph.plant_shipping_nodes), t = 1:T
)
model[:store] = Dict(
(n, t) =>
@variable(model, lower_bound = 0, upper_bound = n.location.storage_limit)
for n in values(graph.process_nodes), t = 1:T
)
model[:process] = Dict(
(n, t) => @variable(model, lower_bound = 0) for
n in values(graph.process_nodes), t = 1:T
)
model[:open_plant] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:is_open] = Dict(
(n, t) => @variable(model, binary = true) for n in values(graph.process_nodes),
t = 1:T
)
model[:capacity] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity
) for n in values(graph.process_nodes), t = 1:T
)
model[:expansion] = Dict(
(n, t) => @variable(
model,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity - n.location.sizes[1].capacity
) for n in values(graph.process_nodes), t = 1:T
)
end
function slope_open(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function slope_fix_oper_cost(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function create_objective_function!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
obj = AffExpr(0.0)
# Process node costs
for n in values(graph.process_nodes), t = 1:T
# Transportation and variable operating costs
for a in n.incoming_arcs
c = n.location.input.transportation_cost[t] * a.values["distance"]
add_to_expression!(obj, c, model[:flow][a, t])
end
# Opening costs
add_to_expression!(
obj,
n.location.sizes[1].opening_cost[t],
model[:open_plant][n, t],
)
# Fixed operating costs (base)
add_to_expression!(
obj,
n.location.sizes[1].fixed_operating_cost[t],
model[:is_open][n, t],
)
# Fixed operating costs (expansion)
add_to_expression!(obj, slope_fix_oper_cost(n.location, t), model[:expansion][n, t])
# Processing costs
add_to_expression!(
obj,
n.location.sizes[1].variable_operating_cost[t],
model[:process][n, t],
)
# Storage costs
add_to_expression!(obj, n.location.storage_cost[t], model[:store][n, t])
# Expansion costs
if t < T
add_to_expression!(
obj,
slope_open(n.location, t) - slope_open(n.location, t + 1),
model[:expansion][n, t],
)
else
add_to_expression!(obj, slope_open(n.location, t), model[:expansion][n, t])
end
end
# Shipping node costs
for n in values(graph.plant_shipping_nodes), t = 1:T
# Disposal costs
add_to_expression!(
obj,
n.location.disposal_cost[n.product][t],
model[:dispose][n, t],
)
end
@objective(model, Min, obj)
end
function create_shipping_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
model[:eq_balance] = OrderedDict()
for t = 1:T
# Collection centers
for n in graph.collection_shipping_nodes
model[:eq_balance][n, t] = @constraint(
model,
sum(model[:flow][a, t] for a in n.outgoing_arcs) == n.location.amount[t]
)
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(
model,
sum(model[:flow][a, t] for a in n.incoming_arcs) ==
sum(model[:flow][a, t] for a in n.outgoing_arcs) + model[:dispose][n, t]
)
end
end
end
function create_process_node_constraints!(model::JuMP.Model)
graph, T = model[:graph], model[:instance].time
for t = 1:T, n in graph.process_nodes
input_sum = AffExpr(0.0)
for a in n.incoming_arcs
add_to_expression!(input_sum, 1.0, model[:flow][a, t])
end
# Output amount is implied by amount processed
for a in n.outgoing_arcs
@constraint(
model,
model[:flow][a, t] == a.values["weight"] * model[:process][n, t]
)
end
# If plant is closed, capacity is zero
@constraint(
model,
model[:capacity][n, t] <= n.location.sizes[2].capacity * model[:is_open][n, t]
)
# If plant is open, capacity is greater than base
@constraint(
model,
model[:capacity][n, t] >= n.location.sizes[1].capacity * model[:is_open][n, t]
)
# Capacity is linked to expansion
@constraint(
model,
model[:capacity][n, t] <=
n.location.sizes[1].capacity + model[:expansion][n, t]
)
# Can only process up to capacity
@constraint(model, model[:process][n, t] <= model[:capacity][n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(model, model[:capacity][n, t] >= model[:capacity][n, t-1])
@constraint(model, model[:expansion][n, t] >= model[:expansion][n, t-1])
end
# Amount received equals amount processed plus stored
store_in = 0
if t > 1
store_in = model[:store][n, t-1]
end
if t == T
@constraint(model, model[:store][n, t] == 0)
end
@constraint(
model,
input_sum + store_in == model[:store][n, t] + model[:process][n, t]
)
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(
model,
model[:is_open][n, t] == model[:is_open][n, t-1] + model[:open_plant][n, t]
)
else
@constraint(model, model[:is_open][n, t] == model[:open_plant][n, t])
end
# Plant can only be opened during building period
if t model[:instance].building_period
@constraint(model, model[:open_plant][n, t] == 0)
end
end
end

227
src/model/getsol.jl Normal file
View File

@@ -0,0 +1,227 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function get_solution(model::JuMP.Model; marginal_costs = true)
graph, instance = model[:graph], model[:instance]
T = instance.time
output = OrderedDict(
"Plants" => OrderedDict(),
"Products" => OrderedDict(),
"Costs" => OrderedDict(
"Fixed operating (\$)" => zeros(T),
"Variable operating (\$)" => zeros(T),
"Opening (\$)" => zeros(T),
"Transportation (\$)" => zeros(T),
"Disposal (\$)" => zeros(T),
"Expansion (\$)" => zeros(T),
"Storage (\$)" => zeros(T),
"Total (\$)" => zeros(T),
),
"Energy" =>
OrderedDict("Plants (GJ)" => zeros(T), "Transportation (GJ)" => zeros(T)),
"Emissions" => OrderedDict(
"Plants (tonne)" => OrderedDict(),
"Transportation (tonne)" => OrderedDict(),
),
)
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
plant_to_shipping_nodes = OrderedDict()
for p in instance.plants
plant_to_shipping_nodes[p] = []
for a in plant_to_process_node[p].outgoing_arcs
push!(plant_to_shipping_nodes[p], a.dest)
end
end
# Products
if marginal_costs
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any,Any}(
"Marginal cost (\$/tonne)" => [
round(abs(JuMP.shadow_price(model[:eq_balance][n, t])), digits = 2) for t = 1:T
],
"Latitude (deg)" => n.location.latitude,
"Longitude (deg)" => n.location.longitude,
"Amount (tonne)" => n.location.amount,
)
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
end
# Plants
for plant in instance.plants
skip_plant = true
process_node = plant_to_process_node[plant]
plant_dict = OrderedDict{Any,Any}(
"Input" => OrderedDict(),
"Output" =>
OrderedDict("Send" => OrderedDict(), "Dispose" => OrderedDict()),
"Input product" => plant.input.name,
"Total input (tonne)" => [0.0 for t = 1:T],
"Total output" => OrderedDict(),
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" =>
[JuMP.value(model[:capacity][process_node, t]) for t = 1:T],
"Opening cost (\$)" => [
JuMP.value(model[:open_plant][process_node, t]) *
plant.sizes[1].opening_cost[t] for t = 1:T
],
"Fixed operating cost (\$)" => [
JuMP.value(model[:is_open][process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(model[:expansion][process_node, t]) *
slope_fix_oper_cost(plant, t) for t = 1:T
],
"Expansion cost (\$)" => [
(
if t == 1
slope_open(plant, t) * JuMP.value(model[:expansion][process_node, t])
else
slope_open(plant, t) * (
JuMP.value(model[:expansion][process_node, t]) -
JuMP.value(model[:expansion][process_node, t-1])
)
end
) for t = 1:T
],
"Process (tonne)" =>
[JuMP.value(model[:process][process_node, t]) for t = 1:T],
"Variable operating cost (\$)" => [
JuMP.value(model[:process][process_node, t]) *
plant.sizes[1].variable_operating_cost[t] for t = 1:T
],
"Storage (tonne)" =>
[JuMP.value(model[:store][process_node, t]) for t = 1:T],
"Storage cost (\$)" => [
JuMP.value(model[:store][process_node, t]) * plant.storage_cost[t]
for t = 1:T
],
)
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
output["Costs"]["Variable operating (\$)"] +=
plant_dict["Variable operating cost (\$)"]
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
output["Costs"]["Storage (\$)"] += plant_dict["Storage cost (\$)"]
# Inputs
for a in process_node.incoming_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict{Any,Any}(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.source.location.latitude,
"Longitude (deg)" => a.source.location.longitude,
"Transportation cost (\$)" =>
a.source.product.transportation_cost .* vals .* a.values["distance"],
"Transportation energy (J)" =>
vals .* a.values["distance"] .* a.source.product.transportation_energy,
"Emissions (tonne)" => OrderedDict(),
)
emissions_dict = output["Emissions"]["Transportation (tonne)"]
for (em_name, em_values) in a.source.product.transportation_emissions
dict["Emissions (tonne)"][em_name] =
em_values .* dict["Amount (tonne)"] .* a.values["distance"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
end
if a.source.location isa CollectionCenter
plant_name = "Origin"
location_name = a.source.location.name
else
plant_name = a.source.location.plant_name
location_name = a.source.location.location_name
end
if plant_name keys(plant_dict["Input"])
plant_dict["Input"][plant_name] = OrderedDict()
end
plant_dict["Input"][plant_name][location_name] = dict
plant_dict["Total input (tonne)"] += vals
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
output["Energy"]["Transportation (GJ)"] +=
dict["Transportation energy (J)"] / 1e9
end
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
plant_dict["Emissions (tonne)"] = OrderedDict()
emissions_dict = output["Emissions"]["Plants (tonne)"]
for (em_name, em_values) in plant.emissions
plant_dict["Emissions (tonne)"][em_name] =
em_values .* plant_dict["Total input (tonne)"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
end
# Outputs
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount = [JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] =
disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] =
[JuMP.value(model[:dispose][shipping_node, t]) for t = 1:T]
disposal_dict["Cost (\$)"] = [
disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t] for t = 1:T
]
plant_dict["Total output"][product_name] += disposal_amount
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
end
for a in shipping_node.outgoing_arcs
vals = [JuMP.value(model[:flow][a, t]) for t = 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.dest.location.latitude,
"Longitude (deg)" => a.dest.location.longitude,
)
if a.dest.location.plant_name keys(product_dict)
product_dict[a.dest.location.plant_name] = OrderedDict()
end
product_dict[a.dest.location.plant_name][a.dest.location.location_name] =
dict
plant_dict["Total output"][product_name] += vals
end
end
if !skip_plant
if plant.plant_name keys(output["Plants"])
output["Plants"][plant.plant_name] = OrderedDict()
end
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
end
end
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
return output
end

97
src/model/resolve.jl Normal file
View File

@@ -0,0 +1,97 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
function resolve(model_old, filename::AbstractString; kwargs...)::OrderedDict
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
return resolve(model_old, instance; kwargs...)
end
function resolve(model_old, instance::Instance; optimizer = nothing)::OrderedDict
milp_optimizer = lp_optimizer = optimizer
if optimizer === nothing
milp_optimizer = _get_default_milp_optimizer()
lp_optimizer = _get_default_lp_optimizer()
end
@info "Building new graph..."
graph = build_graph(instance)
_print_graph_stats(instance, graph)
@info "Building new optimization model..."
model_new = RELOG.build_model(instance, graph, milp_optimizer)
@info "Fixing decision variables..."
_fix_plants!(model_old, model_new)
JuMP.set_optimizer(model_new, lp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model_new)
if !has_values(model_new)
@warn("No solution available")
return OrderedDict()
end
@info "Extracting solution..."
solution = get_solution(model_new, marginal_costs = true)
return solution
end
function _fix_plants!(model_old, model_new)::Nothing
T = model_new[:instance].time
# Fix open_plant variables
for ((node_old, t), var_old) in model_old[:open_plant]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:open_plant][node_new, t]
JuMP.unset_binary(var_new)
JuMP.fix(var_new, value_old)
end
# Fix is_open variables
for ((node_old, t), var_old) in model_old[:is_open]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:is_open][node_new, t]
JuMP.unset_binary(var_new)
JuMP.fix(var_new, value_old)
end
# Fix plant capacities
for ((node_old, t), var_old) in model_old[:capacity]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:capacity][node_new, t]
JuMP.delete_lower_bound(var_new)
JuMP.delete_upper_bound(var_new)
JuMP.fix(var_new, value_old)
end
# Fix plant expansion
for ((node_old, t), var_old) in model_old[:expansion]
value_old = JuMP.value(var_old)
node_new = model_new[:graph].name_to_process_node_map[(
node_old.location.plant_name,
node_old.location.location_name,
)]
var_new = model_new[:expansion][node_new, t]
JuMP.delete_lower_bound(var_new)
JuMP.delete_upper_bound(var_new)
JuMP.fix(var_new, value_old)
end
end

109
src/model/solve.jl Normal file
View File

@@ -0,0 +1,109 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
function _get_default_milp_optimizer()
return optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
end
function _get_default_lp_optimizer()
return optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
end
function _print_graph_stats(instance::Instance, graph::Graph)::Nothing
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(
" %12d shipping nodes (collection)",
length(graph.collection_shipping_nodes)
)
@info @sprintf(" %12d arcs", length(graph.arcs))
return
end
function solve(
instance::Instance;
optimizer = nothing,
output = nothing,
marginal_costs = true,
return_model = false,
)
milp_optimizer = lp_optimizer = optimizer
if optimizer == nothing
milp_optimizer = _get_default_milp_optimizer()
lp_optimizer = _get_default_lp_optimizer()
end
@info "Building graph..."
graph = RELOG.build_graph(instance)
_print_graph_stats(instance, graph)
@info "Building optimization model..."
model = RELOG.build_model(instance, graph, milp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model)
if !has_values(model)
error("No solution available")
end
if marginal_costs
@info "Re-optimizing with integer variables fixed..."
all_vars = JuMP.all_variables(model)
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
JuMP.set_optimizer(model, lp_optimizer)
for var in all_vars
if JuMP.is_binary(var)
JuMP.unset_binary(var)
JuMP.fix(var, vals[var])
end
end
JuMP.optimize!(model)
end
@info "Extracting solution..."
solution = get_solution(model, marginal_costs = marginal_costs)
if output != nothing
write(solution, output)
end
if return_model
return solution, model
else
return solution
end
end
function solve(filename::AbstractString; heuristic = false, kwargs...)
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
if heuristic && instance.time > 1
@info "Solving single-period version..."
compressed = _compress(instance)
csol = solve(compressed; output = nothing, marginal_costs = false, kwargs...)
@info "Filtering candidate locations..."
selected_pairs = []
for (plant_name, plant_dict) in csol["Plants"]
for (location_name, location_dict) in plant_dict
push!(selected_pairs, (plant_name, location_name))
end
end
filtered_plants = []
for p in instance.plants
if (p.plant_name, p.location_name) in selected_pairs
push!(filtered_plants, p)
end
end
instance.plants = filtered_plants
@info "Solving original version..."
end
sol = solve(instance; kwargs...)
return sol
end

View File

@@ -1,268 +0,0 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plants_report(solution::Dict)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."latitude (deg)" = Float64[]
df."longitude (deg)" = Float64[]
df."capacity (tonne)" = Float64[]
df."amount processed (tonne)" = Float64[]
df."utilization factor (%)" = Float64[]
df."energy (GJ)" = Float64[]
df."opening cost (\$)" = Float64[]
df."expansion cost (\$)" = Float64[]
df."fixed operating cost (\$)" = Float64[]
df."variable operating cost (\$)" = Float64[]
df."total cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
var_cost = zeros(T)
for (src_plant_name, src_plant_dict) in location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
var_cost += src_location_dict["Variable operating cost (\$)"]
end
end
var_cost = round.(var_cost, digits=2)
for year in 1:T
opening_cost = round(location_dict["Opening cost (\$)"][year], digits=2)
expansion_cost = round(location_dict["Expansion cost (\$)"][year], digits=2)
fixed_cost = round(location_dict["Fixed operating cost (\$)"][year], digits=2)
total_cost = round(var_cost[year] + opening_cost + expansion_cost + fixed_cost, digits=2)
capacity = round(location_dict["Capacity (tonne)"][year], digits=2)
processed = round(location_dict["Total input (tonne)"][year], digits=2)
utilization_factor = round(processed / capacity * 100.0, digits=2)
energy = round(location_dict["Energy (GJ)"][year], digits=2)
latitude = round(location_dict["Latitude (deg)"], digits=6)
longitude = round(location_dict["Longitude (deg)"], digits=6)
push!(df, [
plant_name,
location_name,
year,
latitude,
longitude,
capacity,
processed,
utilization_factor,
energy,
opening_cost,
expansion_cost,
fixed_cost,
var_cost[year],
total_cost,
])
end
end
end
return df
end
function plant_outputs_report(solution::Dict)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."product name" = String[]
df."amount produced (tonne)" = Float64[]
df."amount sent (tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."disposal cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (product_name, amount_produced) in location_dict["Total output"]
send_dict = location_dict["Output"]["Send"]
disposal_dict = location_dict["Output"]["Dispose"]
sent = zeros(T)
if product_name in keys(send_dict)
for (dst_plant_name, dst_plant_dict) in send_dict[product_name]
for (dst_location_name, dst_location_dict) in dst_plant_dict
sent += dst_location_dict["Amount (tonne)"]
end
end
end
sent = round.(sent, digits=2)
disposal_amount = zeros(T)
disposal_cost = zeros(T)
if product_name in keys(disposal_dict)
disposal_amount += disposal_dict[product_name]["Amount (tonne)"]
disposal_cost += disposal_dict[product_name]["Cost (\$)"]
end
disposal_amount = round.(disposal_amount, digits=2)
disposal_cost = round.(disposal_cost, digits=2)
for year in 1:T
push!(df, [
plant_name,
location_name,
year,
product_name,
round(amount_produced[year], digits=2),
sent[year],
disposal_amount[year],
disposal_cost[year],
])
end
end
end
end
return df
end
function plant_emissions_report(solution::Dict)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (emission_name, emission_amount) in location_dict["Emissions (tonne)"]
for year in 1:T
push!(df, [
plant_name,
location_name,
year,
emission_name,
round(emission_amount[year], digits=2),
])
end
end
end
end
return df
end
function transportation_report(solution::Dict)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."amount (tonne)" = Float64[]
df."amount-distance (tonne-km)" = Float64[]
df."transportation cost (\$)" = Float64[]
df."transportation energy (GJ)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for year in 1:T
push!(df, [
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits=6),
round(src_location_dict["Longitude (deg)"], digits=6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits=6),
round(dst_location_dict["Longitude (deg)"], digits=6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"][year], digits=2),
round(src_location_dict["Amount (tonne)"][year], digits=2),
round(src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"][year],
digits=2),
round(src_location_dict["Transportation cost (\$)"][year], digits=2),
round(src_location_dict["Transportation energy (J)"][year] / 1e9, digits=2),
])
end
end
end
end
end
return df
end
function transportation_emissions_report(solution::Dict)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."shipped amount (tonne)" = Float64[]
df."shipped amount-distance (tonne-km)" = Float64[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for (emission_name, emission_amount) in src_location_dict["Emissions (tonne)"]
for year in 1:T
push!(df, [
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits=6),
round(src_location_dict["Longitude (deg)"], digits=6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits=6),
round(dst_location_dict["Longitude (deg)"], digits=6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"][year], digits=2),
round(src_location_dict["Amount (tonne)"][year], digits=2),
round(src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"][year],
digits=2),
emission_name,
round(emission_amount[year], digits=2),
])
end
end
end
end
end
end
return df
end
write_plants_report(solution, filename) =
CSV.write(filename, plants_report(solution))
write_plant_outputs_report(solution, filename) =
CSV.write(filename, plant_outputs_report(solution))
write_plant_emissions_report(solution, filename) =
CSV.write(filename, plant_emissions_report(solution))
write_transportation_report(solution, filename) =
CSV.write(filename, transportation_report(solution))
write_transportation_emissions_report(solution, filename) =
CSV.write(filename, transportation_emissions_report(solution))

View File

@@ -0,0 +1,38 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plant_emissions_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (emission_name, emission_amount) in location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
emission_name,
round(emission_amount[year], digits = 2),
],
)
end
end
end
end
return df
end
write_plant_emissions_report(solution, filename) =
CSV.write(filename, plant_emissions_report(solution))

View File

@@ -0,0 +1,66 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plant_outputs_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."product name" = String[]
df."amount produced (tonne)" = Float64[]
df."amount sent (tonne)" = Float64[]
df."amount disposed (tonne)" = Float64[]
df."disposal cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for (product_name, amount_produced) in location_dict["Total output"]
send_dict = location_dict["Output"]["Send"]
disposal_dict = location_dict["Output"]["Dispose"]
sent = zeros(T)
if product_name in keys(send_dict)
for (dst_plant_name, dst_plant_dict) in send_dict[product_name]
for (dst_location_name, dst_location_dict) in dst_plant_dict
sent += dst_location_dict["Amount (tonne)"]
end
end
end
sent = round.(sent, digits = 2)
disposal_amount = zeros(T)
disposal_cost = zeros(T)
if product_name in keys(disposal_dict)
disposal_amount += disposal_dict[product_name]["Amount (tonne)"]
disposal_cost += disposal_dict[product_name]["Cost (\$)"]
end
disposal_amount = round.(disposal_amount, digits = 2)
disposal_cost = round.(disposal_cost, digits = 2)
for year = 1:T
push!(
df,
[
plant_name,
location_name,
year,
product_name,
round(amount_produced[year], digits = 2),
sent[year],
disposal_amount[year],
disposal_cost[year],
],
)
end
end
end
end
return df
end
write_plant_outputs_report(solution, filename) =
CSV.write(filename, plant_outputs_report(solution))

79
src/reports/plants.jl Normal file
View File

@@ -0,0 +1,79 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function plants_report(solution)::DataFrame
df = DataFrame()
df."plant type" = String[]
df."location name" = String[]
df."year" = Int[]
df."latitude (deg)" = Float64[]
df."longitude (deg)" = Float64[]
df."capacity (tonne)" = Float64[]
df."amount processed (tonne)" = Float64[]
df."amount received (tonne)" = Float64[]
df."amount in storage (tonne)" = Float64[]
df."utilization factor (%)" = Float64[]
df."energy (GJ)" = Float64[]
df."opening cost (\$)" = Float64[]
df."expansion cost (\$)" = Float64[]
df."fixed operating cost (\$)" = Float64[]
df."variable operating cost (\$)" = Float64[]
df."storage cost (\$)" = Float64[]
df."total cost (\$)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (plant_name, plant_dict) in solution["Plants"]
for (location_name, location_dict) in plant_dict
for year = 1:T
capacity = round(location_dict["Capacity (tonne)"][year], digits = 2)
received = round(location_dict["Total input (tonne)"][year], digits = 2)
processed = round(location_dict["Process (tonne)"][year], digits = 2)
in_storage = round(location_dict["Storage (tonne)"][year], digits = 2)
utilization_factor = round(processed / capacity * 100.0, digits = 2)
energy = round(location_dict["Energy (GJ)"][year], digits = 2)
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
opening_cost = round(location_dict["Opening cost (\$)"][year], digits = 2)
expansion_cost =
round(location_dict["Expansion cost (\$)"][year], digits = 2)
fixed_cost =
round(location_dict["Fixed operating cost (\$)"][year], digits = 2)
var_cost =
round(location_dict["Variable operating cost (\$)"][year], digits = 2)
storage_cost = round(location_dict["Storage cost (\$)"][year], digits = 2)
total_cost = round(
opening_cost + expansion_cost + fixed_cost + var_cost + storage_cost,
digits = 2,
)
push!(
df,
[
plant_name,
location_name,
year,
latitude,
longitude,
capacity,
processed,
received,
in_storage,
utilization_factor,
energy,
opening_cost,
expansion_cost,
fixed_cost,
var_cost,
storage_cost,
total_cost,
],
)
end
end
end
return df
end
write_plants_report(solution, filename) = CSV.write(filename, plants_report(solution))

43
src/reports/products.jl Normal file
View File

@@ -0,0 +1,43 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function products_report(solution; marginal_costs = true)::DataFrame
df = DataFrame()
df."product name" = String[]
df."location name" = String[]
df."latitude (deg)" = Float64[]
df."longitude (deg)" = Float64[]
df."year" = Int[]
df."amount (tonne)" = Float64[]
df."marginal cost (\$/tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (prod_name, prod_dict) in solution["Products"]
for (location_name, location_dict) in prod_dict
for year = 1:T
marginal_cost = location_dict["Marginal cost (\$/tonne)"][year]
latitude = round(location_dict["Latitude (deg)"], digits = 6)
longitude = round(location_dict["Longitude (deg)"], digits = 6)
amount = location_dict["Amount (tonne)"][year]
push!(
df,
[
prod_name,
location_name,
latitude,
longitude,
year,
amount,
marginal_cost,
],
)
end
end
end
return df
end
write_products_report(solution, filename) = CSV.write(filename, products_report(solution))

75
src/reports/tr.jl Normal file
View File

@@ -0,0 +1,75 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function transportation_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."amount (tonne)" = Float64[]
df."amount-distance (tonne-km)" = Float64[]
df."transportation cost (\$)" = Float64[]
df."transportation energy (GJ)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 2),
round(
src_location_dict["Amount (tonne)"][year],
digits = 2,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 2,
),
round(
src_location_dict["Transportation cost (\$)"][year],
digits = 2,
),
round(
src_location_dict["Transportation energy (J)"][year] /
1e9,
digits = 2,
),
],
)
end
end
end
end
end
return df
end
write_transportation_report(solution, filename) =
CSV.write(filename, transportation_report(solution))

View File

@@ -0,0 +1,71 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
function transportation_emissions_report(solution)::DataFrame
df = DataFrame()
df."source type" = String[]
df."source location name" = String[]
df."source latitude (deg)" = Float64[]
df."source longitude (deg)" = Float64[]
df."destination type" = String[]
df."destination location name" = String[]
df."destination latitude (deg)" = Float64[]
df."destination longitude (deg)" = Float64[]
df."product" = String[]
df."year" = Int[]
df."distance (km)" = Float64[]
df."shipped amount (tonne)" = Float64[]
df."shipped amount-distance (tonne-km)" = Float64[]
df."emission type" = String[]
df."emission amount (tonne)" = Float64[]
T = length(solution["Energy"]["Plants (GJ)"])
for (dst_plant_name, dst_plant_dict) in solution["Plants"]
for (dst_location_name, dst_location_dict) in dst_plant_dict
for (src_plant_name, src_plant_dict) in dst_location_dict["Input"]
for (src_location_name, src_location_dict) in src_plant_dict
for (emission_name, emission_amount) in
src_location_dict["Emissions (tonne)"]
for year = 1:T
push!(
df,
[
src_plant_name,
src_location_name,
round(src_location_dict["Latitude (deg)"], digits = 6),
round(src_location_dict["Longitude (deg)"], digits = 6),
dst_plant_name,
dst_location_name,
round(dst_location_dict["Latitude (deg)"], digits = 6),
round(dst_location_dict["Longitude (deg)"], digits = 6),
dst_location_dict["Input product"],
year,
round(src_location_dict["Distance (km)"], digits = 2),
round(
src_location_dict["Amount (tonne)"][year],
digits = 2,
),
round(
src_location_dict["Amount (tonne)"][year] *
src_location_dict["Distance (km)"],
digits = 2,
),
emission_name,
round(emission_amount[year], digits = 2),
],
)
end
end
end
end
end
end
return df
end
write_transportation_emissions_report(solution, filename) =
CSV.write(filename, transportation_emissions_report(solution))

14
src/reports/write.jl Normal file
View File

@@ -0,0 +1,14 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using DataFrames
using CSV
import Base: write
function write(solution::AbstractDict, filename::AbstractString)
@info "Writing solution: $filename"
open(filename, "w") do file
JSON.print(file, solution, 2)
end
end

View File

@@ -12,7 +12,9 @@
"Parameters": {
"type": "object",
"properties": {
"time horizon (years)": { "type": "number" }
"time horizon (years)": {
"type": "number"
}
},
"required": [
"time horizon (years)"
@@ -23,17 +25,27 @@
"additionalProperties": {
"type": "object",
"properties": {
"input": { "type": "string" },
"input": {
"type": "string"
},
"outputs (tonne/tonne)": {
"type": "object",
"additionalProperties": { "type": "number" }
"additionalProperties": {
"type": "number"
}
},
"energy (GJ/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"energy (GJ/tonne)": { "$ref": "#/definitions/TimeSeries" },
"emissions (tonne/tonne)": {
"type": "object",
"additionalProperties": { "$ref": "#/definitions/TimeSeries" }
"additionalProperties": {
"$ref": "#/definitions/TimeSeries"
}
},
"locations": { "$ref": "#/definitions/PlantLocation" }
"locations": {
"$ref": "#/definitions/PlantLocation"
}
},
"required": [
"input",
@@ -46,29 +58,61 @@
"additionalProperties": {
"type": "object",
"properties": {
"latitude (deg)": { "type": "number" },
"longitude (deg)": { "type": "number" },
"location": {
"type": "string"
},
"latitude (deg)": {
"type": "number"
},
"longitude (deg)": {
"type": "number"
},
"disposal": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"cost ($/tonne)": { "$ref": "#/definitions/TimeSeries" },
"limit (tonne)": { "$ref": "#/definitions/TimeSeries" }
"cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"limit (tonne)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": [
"cost ($/tonne)"
]
}
},
"storage": {
"type": "object",
"properties": {
"cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"limit (tonne)": {
"type": "number"
}
},
"required": [
"cost ($/tonne)",
"limit (tonne)"
]
},
"capacities (tonne)": {
"type": "object",
"additionalProperties": {
"type": "object",
"properties": {
"variable operating cost ($/tonne)": { "$ref": "#/definitions/TimeSeries" },
"fixed operating cost ($)": { "$ref": "#/definitions/TimeSeries" },
"opening cost ($)": { "$ref": "#/definitions/TimeSeries" }
"variable operating cost ($/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"fixed operating cost ($)": {
"$ref": "#/definitions/TimeSeries"
},
"opening cost ($)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": [
"variable operating cost ($/tonne)",
@@ -79,8 +123,6 @@
}
},
"required": [
"latitude (deg)",
"longitude (deg)",
"capacities (tonne)"
]
}
@@ -90,13 +132,20 @@
"additionalProperties": {
"type": "object",
"properties": {
"latitude (deg)": { "type": "number" },
"longitude (deg)": { "type": "number" },
"amount (tonne)": { "$ref": "#/definitions/TimeSeries" }
"location": {
"type": "string"
},
"latitude (deg)": {
"type": "number"
},
"longitude (deg)": {
"type": "number"
},
"amount (tonne)": {
"$ref": "#/definitions/TimeSeries"
}
},
"required": [
"latitude (deg)",
"longitude (deg)",
"amount (tonne)"
]
}
@@ -106,13 +155,21 @@
"additionalProperties": {
"type": "object",
"properties": {
"transportation cost ($/km/tonne)": { "$ref": "#/definitions/TimeSeries" },
"transportation energy (J/km/tonne)": { "$ref": "#/definitions/TimeSeries" },
"transportation cost ($/km/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"transportation energy (J/km/tonne)": {
"$ref": "#/definitions/TimeSeries"
},
"transportation emissions (tonne/km/tonne)": {
"type": "object",
"additionalProperties": { "$ref": "#/definitions/TimeSeries" }
"additionalProperties": {
"$ref": "#/definitions/TimeSeries"
}
},
"initial amounts": { "$ref": "#/definitions/InitialAmount" }
"initial amounts": {
"$ref": "#/definitions/InitialAmount"
}
},
"required": [
"transportation cost ($/km/tonne)"
@@ -122,9 +179,15 @@
},
"type": "object",
"properties": {
"parameters": { "$ref": "#/definitions/Parameters" },
"plants": { "$ref": "#/definitions/Plant" },
"products": { "$ref": "#/definitions/Product" }
"parameters": {
"$ref": "#/definitions/Parameters"
},
"plants": {
"$ref": "#/definitions/Plant"
},
"products": {
"$ref": "#/definitions/Product"
}
},
"required": [
"parameters",

View File

@@ -9,14 +9,7 @@ using JuMP
using MathOptInterface
using ProgressBars
pkg = [:Cbc,
:Clp,
:Geodesy,
:JSON,
:JSONSchema,
:JuMP,
:MathOptInterface,
:ProgressBars]
pkg = [:Cbc, :Clp, :Geodesy, :JSON, :JSONSchema, :JuMP, :MathOptInterface, :ProgressBars]
@info "Building system image..."
create_sysimage(pkg, sysimage_path="build/sysimage.so")
create_sysimage(pkg, sysimage_path = "build/sysimage.so")

View File

@@ -1,7 +0,0 @@
plant type,location name,year,emission type,emission amount (tonne)
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,CO2,40711.3
Rare Earth Recycling Plant,"Stanly, North Carolina",1,CO2,23336.47
Rare Earth Recycling Plant,"Lynn, Texas",1,CO2,52927.44
Mega Plant,"Sebastian, Arkansas",1,CO2,110818.84
Mega Plant,"District of Columbia, District of Columbia",1,CO2,63523.43
Mega Plant,"Maricopa, Arizona",1,CO2,144072.0
1 plant type location name year emission type emission amount (tonne)
2 Rare Earth Recycling Plant Sebastian, Arkansas 1 CO2 40711.3
3 Rare Earth Recycling Plant Stanly, North Carolina 1 CO2 23336.47
4 Rare Earth Recycling Plant Lynn, Texas 1 CO2 52927.44
5 Mega Plant Sebastian, Arkansas 1 CO2 110818.84
6 Mega Plant District of Columbia, District of Columbia 1 CO2 63523.43
7 Mega Plant Maricopa, Arizona 1 CO2 144072.0

View File

@@ -1,37 +0,0 @@
plant type,location name,year,product name,amount produced (tonne),amount sent (tonne),amount disposed (tonne),disposal cost ($)
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,rare earth cela,18045.12,0.0,18045.12,0.0
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,rare earth diddy,7624.02,0.0,7624.02,0.0
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,salt,6434.8,0.0,6434.8,324314.03
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,rare earth misch,2188.78,0.0,2188.78,0.0
Rare Earth Recycling Plant,"Stanly, North Carolina",1,rare earth cela,10343.8,0.0,10343.8,0.0
Rare Earth Recycling Plant,"Stanly, North Carolina",1,rare earth diddy,4370.23,0.0,4370.23,0.0
Rare Earth Recycling Plant,"Stanly, North Carolina",1,salt,3688.55,0.0,3688.55,185902.85
Rare Earth Recycling Plant,"Stanly, North Carolina",1,rare earth misch,1254.65,0.0,1254.65,0.0
Rare Earth Recycling Plant,"Lynn, Texas",1,rare earth cela,23459.88,0.0,23459.88,0.0
Rare Earth Recycling Plant,"Lynn, Texas",1,rare earth diddy,9911.74,0.0,9911.74,0.0
Rare Earth Recycling Plant,"Lynn, Texas",1,salt,8365.68,0.0,8365.68,421630.2
Rare Earth Recycling Plant,"Lynn, Texas",1,rare earth misch,2845.56,0.0,2845.56,0.0
Mega Plant,"Sebastian, Arkansas",1,iron-nickel scrap,35656.28,0.0,35656.28,0.0
Mega Plant,"Sebastian, Arkansas",1,mixed-hydroxides,73141.86,0.0,73141.86,0.0
Mega Plant,"Sebastian, Arkansas",1,leach residue,31470.35,0.0,31470.35,6.38848022e6
Mega Plant,"Sebastian, Arkansas",1,plastic pack,96503.37,0.0,96503.37,4.86376966e6
Mega Plant,"Sebastian, Arkansas",1,salt,285304.6,0.0,285304.6,1.437935192e7
Mega Plant,"Sebastian, Arkansas",1,rare earth mix,44145.84,44145.84,0.0,0.0
Mega Plant,"Sebastian, Arkansas",1,nickel-iron scrap,178655.26,0.0,178655.26,0.0
Mega Plant,"Sebastian, Arkansas",1,nickel,37931.36,0.0,37931.36,0.0
Mega Plant,"District of Columbia, District of Columbia",1,iron-nickel scrap,20438.84,0.0,20438.84,0.0
Mega Plant,"District of Columbia, District of Columbia",1,mixed-hydroxides,41926.28,0.0,41926.28,0.0
Mega Plant,"District of Columbia, District of Columbia",1,leach residue,18039.39,0.0,18039.39,3.66199595e6
Mega Plant,"District of Columbia, District of Columbia",1,plastic pack,55317.53,0.0,55317.53,2.78800343e6
Mega Plant,"District of Columbia, District of Columbia",1,salt,163541.92,0.0,163541.92,8.24251257e6
Mega Plant,"District of Columbia, District of Columbia",1,rare earth mix,25305.22,25305.22,0.0,0.0
Mega Plant,"District of Columbia, District of Columbia",1,nickel-iron scrap,102408.52,0.0,102408.52,0.0
Mega Plant,"District of Columbia, District of Columbia",1,nickel,21742.96,0.0,21742.96,0.0
Mega Plant,"Maricopa, Arizona",1,iron-nickel scrap,46355.57,0.0,46355.57,0.0
Mega Plant,"Maricopa, Arizona",1,mixed-hydroxides,95089.37,0.0,95089.37,0.0
Mega Plant,"Maricopa, Arizona",1,leach residue,40913.58,0.0,40913.58,8.30545698e6
Mega Plant,"Maricopa, Arizona",1,plastic pack,125460.91,0.0,125460.91,6.32322998e6
Mega Plant,"Maricopa, Arizona",1,salt,370915.31,0.0,370915.31,1.869413141e7
Mega Plant,"Maricopa, Arizona",1,rare earth mix,57392.58,57392.58,0.0,0.0
Mega Plant,"Maricopa, Arizona",1,nickel-iron scrap,232263.93,0.0,232263.93,0.0
Mega Plant,"Maricopa, Arizona",1,nickel,49313.34,0.0,49313.34,0.0
1 plant type location name year product name amount produced (tonne) amount sent (tonne) amount disposed (tonne) disposal cost ($)
2 Rare Earth Recycling Plant Sebastian, Arkansas 1 rare earth cela 18045.12 0.0 18045.12 0.0
3 Rare Earth Recycling Plant Sebastian, Arkansas 1 rare earth diddy 7624.02 0.0 7624.02 0.0
4 Rare Earth Recycling Plant Sebastian, Arkansas 1 salt 6434.8 0.0 6434.8 324314.03
5 Rare Earth Recycling Plant Sebastian, Arkansas 1 rare earth misch 2188.78 0.0 2188.78 0.0
6 Rare Earth Recycling Plant Stanly, North Carolina 1 rare earth cela 10343.8 0.0 10343.8 0.0
7 Rare Earth Recycling Plant Stanly, North Carolina 1 rare earth diddy 4370.23 0.0 4370.23 0.0
8 Rare Earth Recycling Plant Stanly, North Carolina 1 salt 3688.55 0.0 3688.55 185902.85
9 Rare Earth Recycling Plant Stanly, North Carolina 1 rare earth misch 1254.65 0.0 1254.65 0.0
10 Rare Earth Recycling Plant Lynn, Texas 1 rare earth cela 23459.88 0.0 23459.88 0.0
11 Rare Earth Recycling Plant Lynn, Texas 1 rare earth diddy 9911.74 0.0 9911.74 0.0
12 Rare Earth Recycling Plant Lynn, Texas 1 salt 8365.68 0.0 8365.68 421630.2
13 Rare Earth Recycling Plant Lynn, Texas 1 rare earth misch 2845.56 0.0 2845.56 0.0
14 Mega Plant Sebastian, Arkansas 1 iron-nickel scrap 35656.28 0.0 35656.28 0.0
15 Mega Plant Sebastian, Arkansas 1 mixed-hydroxides 73141.86 0.0 73141.86 0.0
16 Mega Plant Sebastian, Arkansas 1 leach residue 31470.35 0.0 31470.35 6.38848022e6
17 Mega Plant Sebastian, Arkansas 1 plastic pack 96503.37 0.0 96503.37 4.86376966e6
18 Mega Plant Sebastian, Arkansas 1 salt 285304.6 0.0 285304.6 1.437935192e7
19 Mega Plant Sebastian, Arkansas 1 rare earth mix 44145.84 44145.84 0.0 0.0
20 Mega Plant Sebastian, Arkansas 1 nickel-iron scrap 178655.26 0.0 178655.26 0.0
21 Mega Plant Sebastian, Arkansas 1 nickel 37931.36 0.0 37931.36 0.0
22 Mega Plant District of Columbia, District of Columbia 1 iron-nickel scrap 20438.84 0.0 20438.84 0.0
23 Mega Plant District of Columbia, District of Columbia 1 mixed-hydroxides 41926.28 0.0 41926.28 0.0
24 Mega Plant District of Columbia, District of Columbia 1 leach residue 18039.39 0.0 18039.39 3.66199595e6
25 Mega Plant District of Columbia, District of Columbia 1 plastic pack 55317.53 0.0 55317.53 2.78800343e6
26 Mega Plant District of Columbia, District of Columbia 1 salt 163541.92 0.0 163541.92 8.24251257e6
27 Mega Plant District of Columbia, District of Columbia 1 rare earth mix 25305.22 25305.22 0.0 0.0
28 Mega Plant District of Columbia, District of Columbia 1 nickel-iron scrap 102408.52 0.0 102408.52 0.0
29 Mega Plant District of Columbia, District of Columbia 1 nickel 21742.96 0.0 21742.96 0.0
30 Mega Plant Maricopa, Arizona 1 iron-nickel scrap 46355.57 0.0 46355.57 0.0
31 Mega Plant Maricopa, Arizona 1 mixed-hydroxides 95089.37 0.0 95089.37 0.0
32 Mega Plant Maricopa, Arizona 1 leach residue 40913.58 0.0 40913.58 8.30545698e6
33 Mega Plant Maricopa, Arizona 1 plastic pack 125460.91 0.0 125460.91 6.32322998e6
34 Mega Plant Maricopa, Arizona 1 salt 370915.31 0.0 370915.31 1.869413141e7
35 Mega Plant Maricopa, Arizona 1 rare earth mix 57392.58 57392.58 0.0 0.0
36 Mega Plant Maricopa, Arizona 1 nickel-iron scrap 232263.93 0.0 232263.93 0.0
37 Mega Plant Maricopa, Arizona 1 nickel 49313.34 0.0 49313.34 0.0

View File

@@ -1,7 +0,0 @@
plant type,location name,year,latitude (deg),longitude (deg),capacity (tonne),amount processed (tonne),utilization factor (%),energy (GJ),opening cost ($),expansion cost ($),fixed operating cost ($),variable operating cost ($),total cost ($)
Rare Earth Recycling Plant,"Sebastian, Arkansas",1,35.23416,-94.212943,44145.84,44145.84,100.0,1.13360359e6,6.9926855e6,1.793555439e7,1.677420707e7,1.0080261442e8,1.4250506138e8
Rare Earth Recycling Plant,"Stanly, North Carolina",1,35.334445,-80.223231,25305.22,25305.22,100.0,649802.71,7.1653444e6,9.98954108e6,1.126536154e7,5.778193764e7,8.620218466e7
Rare Earth Recycling Plant,"Lynn, Texas",1,33.166444,-101.793455,57392.58,57392.58,100.0,1.47376145e6,7.4243328e6,2.5154042e7,2.06474474e7,1.310502261e8,1.842760483e8
Mega Plant,"Sebastian, Arkansas",1,35.23416,-94.212943,553817.3,553817.3,100.0,3.08574408e6,1.6858178e7,4.012879371e7,3.834652057e7,4.2898688058e8,5.2432037286e8
Mega Plant,"District of Columbia, District of Columbia",1,38.930028,-76.974164,317458.4,317458.4,100.0,1.76880602e6,2.12288167e7,2.746685387e7,2.602109584e7,2.4590327664e8,3.2062004305e8
Mega Plant,"Maricopa, Arizona",1,33.647365,-111.893669,720000.0,720000.0,100.0,4.0116763e6,2.10206911e7,6.60955172e7,4.70124619e7,5.57712e8,6.918406702e8
1 plant type location name year latitude (deg) longitude (deg) capacity (tonne) amount processed (tonne) utilization factor (%) energy (GJ) opening cost ($) expansion cost ($) fixed operating cost ($) variable operating cost ($) total cost ($)
2 Rare Earth Recycling Plant Sebastian, Arkansas 1 35.23416 -94.212943 44145.84 44145.84 100.0 1.13360359e6 6.9926855e6 1.793555439e7 1.677420707e7 1.0080261442e8 1.4250506138e8
3 Rare Earth Recycling Plant Stanly, North Carolina 1 35.334445 -80.223231 25305.22 25305.22 100.0 649802.71 7.1653444e6 9.98954108e6 1.126536154e7 5.778193764e7 8.620218466e7
4 Rare Earth Recycling Plant Lynn, Texas 1 33.166444 -101.793455 57392.58 57392.58 100.0 1.47376145e6 7.4243328e6 2.5154042e7 2.06474474e7 1.310502261e8 1.842760483e8
5 Mega Plant Sebastian, Arkansas 1 35.23416 -94.212943 553817.3 553817.3 100.0 3.08574408e6 1.6858178e7 4.012879371e7 3.834652057e7 4.2898688058e8 5.2432037286e8
6 Mega Plant District of Columbia, District of Columbia 1 38.930028 -76.974164 317458.4 317458.4 100.0 1.76880602e6 2.12288167e7 2.746685387e7 2.602109584e7 2.4590327664e8 3.2062004305e8
7 Mega Plant Maricopa, Arizona 1 33.647365 -111.893669 720000.0 720000.0 100.0 4.0116763e6 2.10206911e7 6.60955172e7 4.70124619e7 5.57712e8 6.918406702e8

Binary file not shown.

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

39
test/fixtures/storage.json vendored Normal file
View File

@@ -0,0 +1,39 @@
{
"parameters": {
"time horizon (years)": 3
},
"products": {
"battery": {
"initial amounts": {
"Chicago": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"amount (tonne)": [100.0, 0.0, 0.0]
}
},
"transportation cost ($/km/tonne)": [0.01, 0.01, 0.01]
}
},
"plants": {
"mega plant": {
"input": "battery",
"locations": {
"Chicago": {
"latitude (deg)": 0.0,
"longitude (deg)": 0.0,
"storage": {
"cost ($/tonne)": [2.0, 1.5, 1.0],
"limit (tonne)": 50.0
},
"capacities (tonne)": {
"100": {
"opening cost ($)": [0.0, 0.0, 0],
"fixed operating cost ($)": [0.0, 0.0, 0.0],
"variable operating cost ($/tonne)": [10.0, 5.0, 2.0]
}
}
}
}
}
}
}

39
test/graph/build_test.jl Normal file
View File

@@ -0,0 +1,39 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "build_graph" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1095.62
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end

View File

@@ -1,42 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "Graph" begin
@testset "build_graph" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../instances/s1.json")
graph = RELOG.build_graph(instance)
process_node_by_location_name = Dict(n.location.location_name => n
for n in graph.process_nodes)
@test length(graph.plant_shipping_nodes) == 8
@test length(graph.collection_shipping_nodes) == 10
@test length(graph.process_nodes) == 6
node = graph.collection_shipping_nodes[1]
@test node.location.name == "C1"
@test length(node.incoming_arcs) == 0
@test length(node.outgoing_arcs) == 2
@test node.outgoing_arcs[1].source.location.name == "C1"
@test node.outgoing_arcs[1].dest.location.plant_name == "F1"
@test node.outgoing_arcs[1].dest.location.location_name == "L1"
@test node.outgoing_arcs[1].values["distance"] == 1095.62
node = process_node_by_location_name["L1"]
@test node.location.plant_name == "F1"
@test node.location.location_name == "L1"
@test length(node.incoming_arcs) == 10
@test length(node.outgoing_arcs) == 2
node = process_node_by_location_name["L3"]
@test node.location.plant_name == "F2"
@test node.location.location_name == "L3"
@test length(node.incoming_arcs) == 2
@test length(node.outgoing_arcs) == 2
@test length(graph.arcs) == 38
end
end

View File

@@ -0,0 +1,53 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "compress" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
compressed = RELOG._compress(instance)
product_name_to_product = Dict(p.name => p for p in compressed.products)
location_name_to_facility = Dict()
for p in compressed.plants
location_name_to_facility[p.location_name] = p
end
for c in compressed.collection_centers
location_name_to_facility[c.name] = c
end
p1 = product_name_to_product["P1"]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
c1 = location_name_to_facility["C1"]
l1 = location_name_to_facility["L1"]
@test compressed.time == 1
@test compressed.building_period == [1]
@test p1.name == "P1"
@test p1.transportation_cost [0.015]
@test p1.transportation_energy [0.115]
@test p1.transportation_emissions["CO2"] [0.051]
@test p1.transportation_emissions["CH4"] [0.0025]
@test c1.name == "C1"
@test c1.amount [1869.12]
@test l1.plant_name == "F1"
@test l1.location_name == "L1"
@test l1.energy [0.115]
@test l1.emissions["CO2"] [0.051]
@test l1.emissions["CH4"] [0.0025]
@test l1.sizes[1].opening_cost [500]
@test l1.sizes[2].opening_cost [1250]
@test l1.sizes[1].fixed_operating_cost [60]
@test l1.sizes[2].fixed_operating_cost [60]
@test l1.sizes[1].variable_operating_cost [30]
@test l1.sizes[2].variable_operating_cost [30]
@test l1.disposal_limit[p2] [2.0]
@test l1.disposal_limit[p3] [2.0]
@test l1.disposal_cost[p2] [-10.0]
@test l1.disposal_cost[p3] [-10.0]
end

View File

@@ -0,0 +1,25 @@
# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using RELOG
@testset "geodb_query (2018-us-county)" begin
region = RELOG.geodb_query("2018-us-county:17043")
@test region.centroid.lat == 41.83956
@test region.centroid.lon == -88.08857
@test region.population == 922_921
end
# @testset "geodb_query (2018-us-zcta)" begin
# region = RELOG.geodb_query("2018-us-zcta:60439")
# @test region.centroid.lat == 41.68241
# @test region.centroid.lon == -87.98954
# end
@testset "geodb_query (us-state)" begin
region = RELOG.geodb_query("us-state:IL")
@test region.centroid.lat == 39.73939
@test region.centroid.lon == -89.50414
@test region.population == 12_671_821
end

View File

@@ -0,0 +1,86 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "parse" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(plants) == 6
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "parse (geodb)" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s2.json")
centers = instance.collection_centers
@test centers[1].name == "C1"
@test centers[1].latitude == 41.83956
@test centers[1].longitude == -88.08857
end
# @testset "parse (invalid)" begin
# basedir = dirname(@__FILE__)
# @test_throws ErrorException RELOG.parsefile("$basedir/../fixtures/s1-wrong-length.json")
# end

View File

@@ -1,79 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "Instance" begin
@testset "load" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../instances/s1.json")
centers = instance.collection_centers
plants = instance.plants
products = instance.products
location_name_to_plant = Dict(p.location_name => p for p in plants)
product_name_to_product = Dict(p.name => p for p in products)
@test length(centers) == 10
@test centers[1].name == "C1"
@test centers[1].latitude == 7
@test centers[1].latitude == 7
@test centers[1].longitude == 7
@test centers[1].amount == [934.56, 934.56]
@test centers[1].product.name == "P1"
@test length(plants) == 6
plant = location_name_to_plant["L1"]
@test plant.plant_name == "F1"
@test plant.location_name == "L1"
@test plant.input.name == "P1"
@test plant.latitude == 0
@test plant.longitude == 0
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 250
@test plant.sizes[1].opening_cost == [500, 500]
@test plant.sizes[1].fixed_operating_cost == [30, 30]
@test plant.sizes[1].variable_operating_cost == [30, 30]
@test plant.sizes[2].capacity == 1000
@test plant.sizes[2].opening_cost == [1250, 1250]
@test plant.sizes[2].fixed_operating_cost == [30, 30]
@test plant.sizes[2].variable_operating_cost == [30, 30]
p2 = product_name_to_product["P2"]
p3 = product_name_to_product["P3"]
@test length(plant.output) == 2
@test plant.output[p2] == 0.2
@test plant.output[p3] == 0.5
@test plant.disposal_limit[p2] == [1, 1]
@test plant.disposal_limit[p3] == [1, 1]
@test plant.disposal_cost[p2] == [-10, -10]
@test plant.disposal_cost[p3] == [-10, -10]
plant = location_name_to_plant["L3"]
@test plant.location_name == "L3"
@test plant.input.name == "P2"
@test plant.latitude == 25
@test plant.longitude == 65
@test length(plant.sizes) == 2
@test plant.sizes[1].capacity == 1000.0
@test plant.sizes[1].opening_cost == [3000, 3000]
@test plant.sizes[1].fixed_operating_cost == [50, 50]
@test plant.sizes[1].variable_operating_cost == [50, 50]
@test plant.sizes[1] == plant.sizes[2]
p4 = product_name_to_product["P4"]
@test plant.output[p3] == 0.05
@test plant.output[p4] == 0.8
@test plant.disposal_limit[p3] == [1e8, 1e8]
@test plant.disposal_limit[p4] == [0, 0]
end
@testset "validate timeseries" begin
@test_throws String RELOG.parsefile("fixtures/s1-wrong-length.json")
end
end

38
test/model/build_test.jl Normal file
View File

@@ -0,0 +1,38 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
@testset "build" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../../instances/s1.json")
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
set_optimizer_attribute(model, "logLevel", 0)
process_node_by_location_name =
Dict(n.location.location_name => n for n in graph.process_nodes)
shipping_node_by_loc_and_prod_names = Dict(
(n.location.location_name, n.product.name) => n for n in graph.plant_shipping_nodes
)
@test length(model[:flow]) == 76
@test length(model[:dispose]) == 16
@test length(model[:open_plant]) == 12
@test length(model[:capacity]) == 12
@test length(model[:expansion]) == 12
l1 = process_node_by_location_name["L1"]
v = model[:capacity][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1000.0
v = model[:expansion][l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 750.0
v = model[:dispose][shipping_node_by_loc_and_prod_names["L1", "P2"], 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1.0
end

View File

@@ -0,0 +1,11 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG
@testset "Resolve" begin
# Shoud not crash
filename = "$(pwd())/../instances/s1.json"
solution_old, model_old = RELOG.solve(filename, return_model = true)
solution_new = RELOG.resolve(model_old, filename)
end

61
test/model/solve_test.jl Normal file
View File

@@ -0,0 +1,61 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
basedir = dirname(@__FILE__)
@testset "solve (exact)" begin
solution_filename_a = tempname()
solution_filename_b = tempname()
solution = RELOG.solve("$basedir/../../instances/s1.json", output = solution_filename_a)
@test isfile(solution_filename_a)
RELOG.write(solution, solution_filename_b)
@test isfile(solution_filename_b)
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
end
@testset "solve (heuristic)" begin
# Should not crash
solution = RELOG.solve("$basedir/../../instances/s1.json", heuristic = true)
end
@testset "solve (infeasible)" begin
json = JSON.parsefile("$basedir/../../instances/s1.json")
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
location_dict["amount (tonne)"] *= 1000
end
@test_throws ErrorException("No solution available") RELOG.solve(RELOG.parse(json))
end
@testset "solve (with storage)" begin
basedir = dirname(@__FILE__)
filename = "$basedir/../fixtures/storage.json"
instance = RELOG.parsefile(filename)
@test instance.plants[1].storage_limit == 50.0
@test instance.plants[1].storage_cost == [2.0, 1.5, 1.0]
solution = RELOG.solve(filename)
plant_dict = solution["Plants"]["mega plant"]["Chicago"]
@test plant_dict["Variable operating cost (\$)"] == [500.0, 0.0, 100.0]
@test plant_dict["Process (tonne)"] == [50.0, 0.0, 50.0]
@test plant_dict["Storage (tonne)"] == [50.0, 50.0, 0.0]
@test plant_dict["Storage cost (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Variable operating (\$)"] == [500.0, 0.0, 100.0]
@test solution["Costs"]["Storage (\$)"] == [100.0, 75.0, 0.0]
@test solution["Costs"]["Total (\$)"] == [600.0, 75.0, 100.0]
end

View File

@@ -1,72 +0,0 @@
# Copyright (C) 2020 Argonne National Laboratory
# Written by Alinson Santos Xavier <axavier@anl.gov>
using RELOG, Cbc, JuMP, Printf, JSON, MathOptInterface.FileFormats
@testset "Model" begin
@testset "build" begin
basedir = dirname(@__FILE__)
instance = RELOG.parsefile("$basedir/../instances/s1.json")
graph = RELOG.build_graph(instance)
model = RELOG.build_model(instance, graph, Cbc.Optimizer)
set_optimizer_attribute(model.mip, "logLevel", 0)
process_node_by_location_name = Dict(n.location.location_name => n
for n in graph.process_nodes)
shipping_node_by_location_and_product_names = Dict((n.location.location_name, n.product.name) => n
for n in graph.plant_shipping_nodes)
@test length(model.vars.flow) == 76
@test length(model.vars.dispose) == 16
@test length(model.vars.open_plant) == 12
@test length(model.vars.capacity) == 12
@test length(model.vars.expansion) == 12
l1 = process_node_by_location_name["L1"]
v = model.vars.capacity[l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1000.0
v = model.vars.expansion[l1, 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 750.0
v = model.vars.dispose[shipping_node_by_location_and_product_names["L1", "P2"], 1]
@test lower_bound(v) == 0.0
@test upper_bound(v) == 1.0
#dest = FileFormats.Model(format = FileFormats.FORMAT_LP)
#MOI.copy_to(dest, model.mip)
#MOI.write_to_file(dest, "model.lp")
end
@testset "solve" begin
solution_filename = tempname()
solution = RELOG.solve("$(pwd())/../instances/s1.json",
output=solution_filename)
@test "Costs" in keys(solution)
@test "Fixed operating (\$)" in keys(solution["Costs"])
@test "Transportation (\$)" in keys(solution["Costs"])
@test "Variable operating (\$)" in keys(solution["Costs"])
@test "Total (\$)" in keys(solution["Costs"])
@test "Plants" in keys(solution)
@test "F1" in keys(solution["Plants"])
@test "F2" in keys(solution["Plants"])
@test "F3" in keys(solution["Plants"])
@test "F4" in keys(solution["Plants"])
end
@testset "infeasible solve" begin
json = JSON.parsefile("$(pwd())/../instances/s1.json")
for (location_name, location_dict) in json["products"]["P1"]["initial amounts"]
location_dict["amount (tonne)"] *= 1000
end
RELOG.solve(RELOG.parse(json))
end
end

View File

@@ -4,25 +4,16 @@
using RELOG, JSON, GZip
load_json_gz(filename) = JSON.parse(GZip.gzopen(filename))
function check(func, expected_csv_filename::String)
solution = load_json_gz("fixtures/nimh_solution.json.gz")
actual_csv_filename = tempname()
func(solution, actual_csv_filename)
@test isfile(actual_csv_filename)
if readlines(actual_csv_filename) != readlines(expected_csv_filename)
out_filename = replace(expected_csv_filename, ".csv" => "_actual.csv")
@error "$func: Unexpected CSV contents: $out_filename"
write(out_filename, read(actual_csv_filename))
@test false
@testset "Reports" begin
@testset "from solve" begin
solution = RELOG.solve("$(pwd())/../instances/s1.json")
tmp_filename = tempname()
# The following should not crash
RELOG.write_plant_emissions_report(solution, tmp_filename)
RELOG.write_plant_outputs_report(solution, tmp_filename)
RELOG.write_plants_report(solution, tmp_filename)
RELOG.write_products_report(solution, tmp_filename)
RELOG.write_transportation_emissions_report(solution, tmp_filename)
RELOG.write_transportation_report(solution, tmp_filename)
end
end
@testset "Reports" begin
check(RELOG.write_plants_report, "fixtures/nimh_plants.csv")
check(RELOG.write_plant_outputs_report, "fixtures/nimh_plant_outputs.csv")
check(RELOG.write_plant_emissions_report, "fixtures/nimh_plant_emissions.csv")
check(RELOG.write_transportation_report, "fixtures/nimh_transportation.csv")
check(RELOG.write_transportation_emissions_report, "fixtures/nimh_transportation_emissions.csv")
end

View File

@@ -4,8 +4,18 @@
using Test
@testset "RELOG" begin
include("instance_test.jl")
include("graph_test.jl")
include("model_test.jl")
@testset "Instance" begin
include("instance/compress_test.jl")
include("instance/geodb_test.jl")
include("instance/parse_test.jl")
end
@testset "Graph" begin
include("graph/build_test.jl")
end
@testset "Model" begin
include("model/build_test.jl")
include("model/solve_test.jl")
include("model/resolve_test.jl")
end
include("reports_test.jl")
end