You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
RELOG/src/model/build.jl

365 lines
11 KiB

# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, ProgressBars, Printf, DataStructures, StochasticPrograms
function build_model(
instance::Instance,
graph::Graph,
optimizer,
)
return build_model(
instance,
[graph],
[1.0],
optimizer=optimizer,
method=:ef,
)
end
function build_model(
instance::Instance,
graphs::Vector{Graph},
probs::Vector{Float64};
optimizer,
method=:ef,
tol=0.1,
)
T = instance.time
@stochastic_model model begin
# Stage 1: Build plants
# =====================================================================
@stage 1 begin
pn = graphs[1].process_nodes
PN = length(pn)
# Var: open_plant
@decision(
model,
open_plant[n in 1:PN, t in 1:T],
binary = true,
)
# Var: is_open
@decision(
model,
is_open[n in 1:PN, t in 1:T],
binary = true,
)
# Objective function
@objective(
model,
Min,
# Opening, fixed operating costs
sum(
pn[n].location.sizes[1].opening_cost[t] * open_plant[n, t] +
pn[n].location.sizes[1].fixed_operating_cost[t] * is_open[n, t]
for n in 1:PN
for t in 1:T
),
)
for t = 1:T, n in 1:PN
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(
model,
is_open[n, t] == is_open[n, t-1] + open_plant[n, t]
)
else
@constraint(model, is_open[n, t] == open_plant[n, t])
end
# Plant can only be opened during building period
if t instance.building_period
@constraint(model, open_plant[n, t] == 0)
end
end
end
# Stage 2: Flows, disposal, capacity & storage
# =====================================================================
@stage 2 begin
@uncertain graph
pn = graph.process_nodes
psn = graph.plant_shipping_nodes
csn = graph.collection_shipping_nodes
arcs = graph.arcs
A = length(arcs)
PN = length(pn)
CSN = length(csn)
PSN = length(psn)
# Var: flow
@recourse(
model,
flow[a in 1:A, t in 1:T],
lower_bound = 0,
)
# Var: plant_dispose
@recourse(
model,
plant_dispose[n in 1:PSN, t in 1:T],
lower_bound = 0,
upper_bound = psn[n].location.disposal_limit[psn[n].product][t],
)
# Var: collection_dispose
@recourse(
model,
collection_dispose[n in 1:CSN, t in 1:T],
lower_bound = 0,
upper_bound = graph.collection_shipping_nodes[n].location.amount[t],
)
# Var: collection_shortfall
@recourse(
model,
collection_shortfall[n in 1:CSN, t in 1:T],
lower_bound = 0,
)
# Var: store
@recourse(
model,
store[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
upper_bound = pn[n].location.storage_limit,
)
# Var: process
@recourse(
model,
process[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
)
# Var: capacity
@recourse(
model,
capacity[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
upper_bound = pn[n].location.sizes[2].capacity,
)
# Var: expansion
@recourse(
model,
expansion[
n in 1:PN,
t in 1:T,
],
lower_bound = 0,
upper_bound = (
pn[n].location.sizes[2].capacity -
pn[n].location.sizes[1].capacity
),
)
# Objective function
@objective(
model,
Min,
sum(
# Transportation costs
pn[n].location.input.transportation_cost[t] *
a.values["distance"] *
flow[a.index,t]
for n in 1:PN
for a in pn[n].incoming_arcs
for t in 1:T
) + sum(
# Fixed operating costs (expansion)
slope_fix_oper_cost(pn[n].location, t) * expansion[n, t] +
# Processing costs
pn[n].location.sizes[1].variable_operating_cost[t] * process[n, t] +
# Storage costs
pn[n].location.storage_cost[t] * store[n, t] +
# Expansion costs
(
t < T ? (
(
slope_open(pn[n].location, t) -
slope_open(pn[n].location, t + 1)
) * expansion[n, t]
) : slope_open(pn[n].location, t) * expansion[n, t]
)
for n in 1:PN
for t in 1:T
) + sum(
# Disposal costs (plants)
psn[n].location.disposal_cost[psn[n].product][t] * plant_dispose[n, t]
for n in 1:PSN
for t in 1:T
) + sum(
# Disposal costs (collection centers)
csn[n].location.product.disposal_cost[t] * collection_dispose[n, t]
for n in 1:CSN
for t in 1:T
) + sum(
# Collection shortfall
1e4 * collection_shortfall[n, t]
for n in 1:CSN
for t in 1:T
)
)
# Process node constraints
for t = 1:T, n in 1:PN
node = pn[n]
# Output amount is implied by amount processed
for arc in node.outgoing_arcs
@constraint(
model,
flow[arc.index, t] == arc.values["weight"] * process[n, t]
)
end
# If plant is closed, capacity is zero
@constraint(
model,
capacity[n, t] <= node.location.sizes[2].capacity * is_open[n, t]
)
# If plant is open, capacity is greater than base
@constraint(
model,
capacity[n, t] >= node.location.sizes[1].capacity * is_open[n, t]
)
# Capacity is linked to expansion
@constraint(
model,
capacity[n, t] <=
node.location.sizes[1].capacity + expansion[n, t]
)
# Can only process up to capacity
@constraint(model, process[n, t] <= capacity[n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(model, capacity[n, t] >= capacity[n, t-1])
@constraint(model, expansion[n, t] >= expansion[n, t-1])
end
# Amount received equals amount processed plus stored
store_in = 0
if t > 1
store_in = store[n, t-1]
end
if t == T
@constraint(model, store[n, t] == 0)
end
@constraint(
model,
sum(
flow[arc.index, t]
for arc in node.incoming_arcs
) + store_in == store[n, t] + process[n, t]
)
end
# Material flow at collection shipping nodes
@constraint(
model,
eq_balance_centers[
n in 1:CSN,
t in 1:T,
],
sum(
flow[arc.index, t]
for arc in csn[n].outgoing_arcs
) == csn[n].location.amount[t] - collection_dispose[n, t] - collection_shortfall[n, t]
)
# Material flow at plant shipping nodes
@constraint(
model,
eq_balance_plant[
n in 1:PSN,
t in 1:T,
],
sum(flow[a.index, t] for a in psn[n].incoming_arcs) ==
sum(flow[a.index, t] for a in psn[n].outgoing_arcs) +
plant_dispose[n, t]
)
# Enforce product disposal limit at collection centers
for t in 1:T, prod in instance.products
if isempty(prod.collection_centers)
continue
end
@constraint(
model,
sum(
collection_dispose[n, t]
for n in 1:CSN
if csn[n].product.name == prod.name
) <= prod.disposal_limit[t]
)
end
end
end
ξ = [
@scenario graph = graphs[i] probability = probs[i]
for i in 1:length(graphs)
]
if method == :ef
sp = instantiate(model, ξ; optimizer=optimizer)
elseif method == :lshaped
sp = instantiate(model, ξ; optimizer=LShaped.Optimizer)
set_optimizer_attribute(sp, MasterOptimizer(), optimizer)
set_optimizer_attribute(sp, SubProblemOptimizer(), optimizer)
set_optimizer_attribute(sp, RelativeTolerance(), tol)
else
error("unknown method: $method")
end
return sp
end
function slope_open(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function slope_fix_oper_cost(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end