You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
RELOG/src/model.jl

486 lines
19 KiB

# RELOG: Reverse Logistics Optimization
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, LinearAlgebra, Geodesy, Cbc, Clp, ProgressBars, Printf, DataStructures
mutable struct ManufacturingModel
mip::JuMP.Model
vars::DotDict
eqs::DotDict
instance::Instance
graph::Graph
end
function build_model(instance::Instance, graph::Graph, optimizer)::ManufacturingModel
model = ManufacturingModel(Model(optimizer), DotDict(), DotDict(), instance, graph)
create_vars!(model)
create_objective_function!(model)
create_shipping_node_constraints!(model)
create_process_node_constraints!(model)
return model
end
function create_vars!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
vars.flow = Dict((a, t) => @variable(mip, lower_bound=0)
for a in graph.arcs, t in 1:T)
vars.dispose = Dict((n, t) => @variable(mip,
lower_bound=0,
upper_bound=n.location.disposal_limit[n.product][t])
for n in values(graph.plant_shipping_nodes), t in 1:T)
vars.open_plant = Dict((n, t) => @variable(mip, binary=true)
for n in values(graph.process_nodes), t in 1:T)
vars.is_open = Dict((n, t) => @variable(mip, binary=true)
for n in values(graph.process_nodes), t in 1:T)
vars.capacity = Dict((n, t) => @variable(mip,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity)
for n in values(graph.process_nodes), t in 1:T)
vars.expansion = Dict((n, t) => @variable(mip,
lower_bound = 0,
upper_bound = n.location.sizes[2].capacity -
n.location.sizes[1].capacity)
for n in values(graph.process_nodes), t in 1:T)
end
function slope_open(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].opening_cost[t] - plant.sizes[1].opening_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function slope_fix_oper_cost(plant, t)
if plant.sizes[2].capacity <= plant.sizes[1].capacity
0.0
else
(plant.sizes[2].fixed_operating_cost[t] - plant.sizes[1].fixed_operating_cost[t]) /
(plant.sizes[2].capacity - plant.sizes[1].capacity)
end
end
function create_objective_function!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
obj = AffExpr(0.0)
# Process node costs
for n in values(graph.process_nodes), t in 1:T
# Transportation and variable operating costs
for a in n.incoming_arcs
c = n.location.input.transportation_cost[t] * a.values["distance"]
c += n.location.sizes[1].variable_operating_cost[t]
add_to_expression!(obj, c, vars.flow[a, t])
end
# Opening costs
add_to_expression!(obj,
n.location.sizes[1].opening_cost[t],
vars.open_plant[n, t])
# Fixed operating costs (base)
add_to_expression!(obj,
n.location.sizes[1].fixed_operating_cost[t],
vars.is_open[n, t])
# Fixed operating costs (expansion)
add_to_expression!(obj,
slope_fix_oper_cost(n.location, t),
vars.expansion[n, t])
# Expansion costs
if t < T
add_to_expression!(obj,
slope_open(n.location, t) - slope_open(n.location, t + 1),
vars.expansion[n, t])
else
add_to_expression!(obj,
slope_open(n.location, t),
vars.expansion[n, t])
end
end
# Disposal costs
for n in values(graph.plant_shipping_nodes), t in 1:T
add_to_expression!(obj, n.location.disposal_cost[n.product][t], vars.dispose[n, t])
end
@objective(mip, Min, obj)
end
function create_shipping_node_constraints!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
eqs = model.eqs
eqs.balance = OrderedDict()
for t in 1:T
# Collection centers
for n in graph.collection_shipping_nodes
eqs.balance[n, t] = @constraint(mip,
sum(vars.flow[a, t] for a in n.outgoing_arcs)
== n.location.amount[t])
end
# Plants
for n in graph.plant_shipping_nodes
@constraint(mip,
sum(vars.flow[a, t] for a in n.incoming_arcs) ==
sum(vars.flow[a, t] for a in n.outgoing_arcs) + vars.dispose[n, t])
end
end
end
function create_process_node_constraints!(model::ManufacturingModel)
mip, vars, graph, T = model.mip, model.vars, model.graph, model.instance.time
for t in 1:T, n in graph.process_nodes
# Output amount is implied by input amount
input_sum = AffExpr(0.0)
for a in n.incoming_arcs
add_to_expression!(input_sum, 1.0, vars.flow[a, t])
end
for a in n.outgoing_arcs
@constraint(mip, vars.flow[a, t] == a.values["weight"] * input_sum)
end
# If plant is closed, capacity is zero
@constraint(mip, vars.capacity[n, t] <= n.location.sizes[2].capacity * vars.is_open[n, t])
# If plant is open, capacity is greater than base
@constraint(mip, vars.capacity[n, t] >= n.location.sizes[1].capacity * vars.is_open[n, t])
# Capacity is linked to expansion
@constraint(mip, vars.capacity[n, t] <= n.location.sizes[1].capacity + vars.expansion[n, t])
# Input sum must be smaller than capacity
@constraint(mip, input_sum <= vars.capacity[n, t])
if t > 1
# Plant capacity can only increase over time
@constraint(mip, vars.capacity[n, t] >= vars.capacity[n, t-1])
@constraint(mip, vars.expansion[n, t] >= vars.expansion[n, t-1])
end
# Plant is currently open if it was already open in the previous time period or
# if it was built just now
if t > 1
@constraint(mip, vars.is_open[n, t] == vars.is_open[n, t-1] + vars.open_plant[n, t])
else
@constraint(mip, vars.is_open[n, t] == vars.open_plant[n, t])
end
# Plant can only be opened during building period
if t model.instance.building_period
@constraint(mip, vars.open_plant[n, t] == 0)
end
end
end
default_milp_optimizer = optimizer_with_attributes(Cbc.Optimizer, "logLevel" => 0)
default_lp_optimizer = optimizer_with_attributes(Clp.Optimizer, "LogLevel" => 0)
function solve(instance::Instance;
optimizer=nothing,
output=nothing,
marginal_costs=true,
)
milp_optimizer = lp_optimizer = optimizer
if optimizer == nothing
milp_optimizer = default_milp_optimizer
lp_optimizer = default_lp_optimizer
end
@info "Building graph..."
graph = RELOG.build_graph(instance)
@info @sprintf(" %12d time periods", instance.time)
@info @sprintf(" %12d process nodes", length(graph.process_nodes))
@info @sprintf(" %12d shipping nodes (plant)", length(graph.plant_shipping_nodes))
@info @sprintf(" %12d shipping nodes (collection)", length(graph.collection_shipping_nodes))
@info @sprintf(" %12d arcs", length(graph.arcs))
@info "Building optimization model..."
model = RELOG.build_model(instance, graph, milp_optimizer)
@info "Optimizing MILP..."
JuMP.optimize!(model.mip)
if !has_values(model.mip)
@warn "No solution available"
return OrderedDict()
end
if marginal_costs
@info "Re-optimizing with integer variables fixed..."
all_vars = JuMP.all_variables(model.mip)
vals = OrderedDict(var => JuMP.value(var) for var in all_vars)
JuMP.set_optimizer(model.mip, lp_optimizer)
for var in all_vars
if JuMP.is_binary(var)
JuMP.unset_binary(var)
JuMP.fix(var, vals[var])
end
end
JuMP.optimize!(model.mip)
end
@info "Extracting solution..."
solution = get_solution(model, marginal_costs=marginal_costs)
if output != nothing
@info "Writing solution: $output"
open(output, "w") do file
JSON.print(file, solution, 2)
end
end
return solution
end
function solve(filename::AbstractString;
heuristic=false,
kwargs...,
)
@info "Reading $filename..."
instance = RELOG.parsefile(filename)
if heuristic
@info "Solving single-period version..."
compressed = _compress(instance)
csol = solve(compressed;
output=nothing,
marginal_costs=false,
kwargs...)
@info "Filtering candidate locations..."
selected_pairs = []
for (plant_name, plant_dict) in csol["Plants"]
for (location_name, location_dict) in plant_dict
push!(selected_pairs, (plant_name, location_name))
end
end
filtered_plants = []
for p in instance.plants
if (p.plant_name, p.location_name) in selected_pairs
push!(filtered_plants, p)
end
end
instance.plants = filtered_plants
@info "Solving original version..."
end
sol = solve(instance; kwargs...)
return sol
end
function get_solution(model::ManufacturingModel;
marginal_costs=true,
)
mip, vars, eqs, graph, instance = model.mip, model.vars, model.eqs, model.graph, model.instance
T = instance.time
output = OrderedDict(
"Plants" => OrderedDict(),
"Products" => OrderedDict(),
"Costs" => OrderedDict(
"Fixed operating (\$)" => zeros(T),
"Variable operating (\$)" => zeros(T),
"Opening (\$)" => zeros(T),
"Transportation (\$)" => zeros(T),
"Disposal (\$)" => zeros(T),
"Expansion (\$)" => zeros(T),
"Total (\$)" => zeros(T),
),
"Energy" => OrderedDict(
"Plants (GJ)" => zeros(T),
"Transportation (GJ)" => zeros(T),
),
"Emissions" => OrderedDict(
"Plants (tonne)" => OrderedDict(),
"Transportation (tonne)" => OrderedDict(),
),
)
plant_to_process_node = OrderedDict(n.location => n for n in graph.process_nodes)
plant_to_shipping_nodes = OrderedDict()
for p in instance.plants
plant_to_shipping_nodes[p] = []
for a in plant_to_process_node[p].outgoing_arcs
push!(plant_to_shipping_nodes[p], a.dest)
end
end
# Products
if marginal_costs
for n in graph.collection_shipping_nodes
location_dict = OrderedDict{Any, Any}(
"Marginal cost (\$/tonne)" => [round(abs(JuMP.shadow_price(eqs.balance[n, t])), digits=2)
for t in 1:T]
)
if n.product.name keys(output["Products"])
output["Products"][n.product.name] = OrderedDict()
end
output["Products"][n.product.name][n.location.name] = location_dict
end
end
# Plants
for plant in instance.plants
skip_plant = true
process_node = plant_to_process_node[plant]
plant_dict = OrderedDict{Any, Any}(
"Input" => OrderedDict(),
"Output" => OrderedDict(
"Send" => OrderedDict(),
"Dispose" => OrderedDict(),
),
"Input product" => plant.input.name,
"Total input (tonne)" => [0.0 for t in 1:T],
"Total output" => OrderedDict(),
"Latitude (deg)" => plant.latitude,
"Longitude (deg)" => plant.longitude,
"Capacity (tonne)" => [JuMP.value(vars.capacity[process_node, t])
for t in 1:T],
"Opening cost (\$)" => [JuMP.value(vars.open_plant[process_node, t]) *
plant.sizes[1].opening_cost[t]
for t in 1:T],
"Fixed operating cost (\$)" => [JuMP.value(vars.is_open[process_node, t]) *
plant.sizes[1].fixed_operating_cost[t] +
JuMP.value(vars.expansion[process_node, t]) *
slope_fix_oper_cost(plant, t)
for t in 1:T],
"Expansion cost (\$)" => [(if t == 1
slope_open(plant, t) * JuMP.value(vars.expansion[process_node, t])
else
slope_open(plant, t) * (
JuMP.value(vars.expansion[process_node, t]) -
JuMP.value(vars.expansion[process_node, t - 1])
)
end)
for t in 1:T],
)
output["Costs"]["Fixed operating (\$)"] += plant_dict["Fixed operating cost (\$)"]
output["Costs"]["Opening (\$)"] += plant_dict["Opening cost (\$)"]
output["Costs"]["Expansion (\$)"] += plant_dict["Expansion cost (\$)"]
# Inputs
for a in process_node.incoming_arcs
vals = [JuMP.value(vars.flow[a, t]) for t in 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict{Any, Any}(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.source.location.latitude,
"Longitude (deg)" => a.source.location.longitude,
"Transportation cost (\$)" => a.source.product.transportation_cost .* vals .* a.values["distance"],
"Variable operating cost (\$)" => plant.sizes[1].variable_operating_cost .* vals,
"Transportation energy (J)" => vals .* a.values["distance"] .* a.source.product.transportation_energy,
"Emissions (tonne)" => OrderedDict(),
)
emissions_dict = output["Emissions"]["Transportation (tonne)"]
for (em_name, em_values) in a.source.product.transportation_emissions
dict["Emissions (tonne)"][em_name] = em_values .* dict["Amount (tonne)"] .* a.values["distance"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += dict["Emissions (tonne)"][em_name]
end
if a.source.location isa CollectionCenter
plant_name = "Origin"
location_name = a.source.location.name
else
plant_name = a.source.location.plant_name
location_name = a.source.location.location_name
end
if plant_name keys(plant_dict["Input"])
plant_dict["Input"][plant_name] = OrderedDict()
end
plant_dict["Input"][plant_name][location_name] = dict
plant_dict["Total input (tonne)"] += vals
output["Costs"]["Transportation (\$)"] += dict["Transportation cost (\$)"]
output["Costs"]["Variable operating (\$)"] += dict["Variable operating cost (\$)"]
output["Energy"]["Transportation (GJ)"] += dict["Transportation energy (J)"] / 1e9
end
plant_dict["Energy (GJ)"] = plant_dict["Total input (tonne)"] .* plant.energy
output["Energy"]["Plants (GJ)"] += plant_dict["Energy (GJ)"]
plant_dict["Emissions (tonne)"] = OrderedDict()
emissions_dict = output["Emissions"]["Plants (tonne)"]
for (em_name, em_values) in plant.emissions
plant_dict["Emissions (tonne)"][em_name] = em_values .* plant_dict["Total input (tonne)"]
if em_name keys(emissions_dict)
emissions_dict[em_name] = zeros(T)
end
emissions_dict[em_name] += plant_dict["Emissions (tonne)"][em_name]
end
# Outputs
for shipping_node in plant_to_shipping_nodes[plant]
product_name = shipping_node.product.name
plant_dict["Total output"][product_name] = zeros(T)
plant_dict["Output"]["Send"][product_name] = product_dict = OrderedDict()
disposal_amount = [JuMP.value(vars.dispose[shipping_node, t]) for t in 1:T]
if sum(disposal_amount) > 1e-5
skip_plant = false
plant_dict["Output"]["Dispose"][product_name] = disposal_dict = OrderedDict()
disposal_dict["Amount (tonne)"] = [JuMP.value(model.vars.dispose[shipping_node, t])
for t in 1:T]
disposal_dict["Cost (\$)"] = [disposal_dict["Amount (tonne)"][t] *
plant.disposal_cost[shipping_node.product][t]
for t in 1:T]
plant_dict["Total output"][product_name] += disposal_amount
output["Costs"]["Disposal (\$)"] += disposal_dict["Cost (\$)"]
end
for a in shipping_node.outgoing_arcs
vals = [JuMP.value(vars.flow[a, t]) for t in 1:T]
if sum(vals) <= 1e-3
continue
end
skip_plant = false
dict = OrderedDict(
"Amount (tonne)" => vals,
"Distance (km)" => a.values["distance"],
"Latitude (deg)" => a.dest.location.latitude,
"Longitude (deg)" => a.dest.location.longitude,
)
if a.dest.location.plant_name keys(product_dict)
product_dict[a.dest.location.plant_name] = OrderedDict()
end
product_dict[a.dest.location.plant_name][a.dest.location.location_name] = dict
plant_dict["Total output"][product_name] += vals
end
end
if !skip_plant
if plant.plant_name keys(output["Plants"])
output["Plants"][plant.plant_name] = OrderedDict()
end
output["Plants"][plant.plant_name][plant.location_name] = plant_dict
end
end
output["Costs"]["Total (\$)"] = sum(values(output["Costs"]))
return output
end