parent
b4cb4d8252
commit
05441b7492
@ -0,0 +1,97 @@
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::PanGua16,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
gn = g.name
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
|
||||
eq_prod_limit_ramp_up_extra_period =
|
||||
_init(model, :eq_prod_limit_ramp_up_extra_period)
|
||||
eq_prod_limit_shutdown_trajectory =
|
||||
_init(model, :eq_prod_limit_shutdown_trajectory)
|
||||
UT = g.min_uptime
|
||||
SU = g.startup_limit # startup rate, i.e., max production right after startup
|
||||
SD = g.shutdown_limit # shutdown rate, i.e., max production right before shutdown
|
||||
RU = g.ramp_up_limit # ramp up rate
|
||||
RD = g.ramp_down_limit # ramp down rate
|
||||
T = model[:instance].time
|
||||
|
||||
for t in 1:T
|
||||
Pbar = g.max_power[t]
|
||||
if Pbar < 1e-7
|
||||
# Skip this time period if max power = 0
|
||||
continue
|
||||
end
|
||||
|
||||
#TRD = floor((Pbar - SU) / RD) # ramp down time
|
||||
# TODO check amk changed TRD wrt Kneuven et al.
|
||||
TRD = ceil((Pbar - SD) / RD) # ramp down time
|
||||
TRU = floor((Pbar - SU) / RU) # ramp up time, can be negative if Pbar < SU
|
||||
|
||||
# TODO check initial time periods: what if generator has been running for x periods?
|
||||
# But maybe ok as long as (35) and (36) are also used...
|
||||
if UT > 1
|
||||
# Equation (38) in Kneuven et al. (2020)
|
||||
# Generalization of (20)
|
||||
# Necessary that if any of the switch_on = 1 in the sum,
|
||||
# then switch_off[gn, t+1] = 0
|
||||
eq_str_prod_limit[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[gn, t] <=
|
||||
Pbar * is_on[gn, t] -
|
||||
(t < T ? (Pbar - SD) * switch_off[gn, t+1] : 0.0) - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i in 0:min(UT - 2, TRU, t - 1)
|
||||
)
|
||||
)
|
||||
|
||||
if UT - 2 < TRU
|
||||
# Equation (40) in Kneuven et al. (2020)
|
||||
# Covers an additional time period of the ramp-up trajectory, compared to (38)
|
||||
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[gn, t] <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i in 0:min(UT - 1, TRU, t - 1)
|
||||
)
|
||||
)
|
||||
end
|
||||
|
||||
# Add in shutdown trajectory if KSD >= 0 (else this is dominated by (38))
|
||||
KSD = min(TRD, UT - 1, T - t - 1)
|
||||
if KSD > 0
|
||||
KSU = min(TRU, UT - 2 - KSD, t - 1)
|
||||
# Equation (41) in Kneuven et al. (2020)
|
||||
eq_prod_limit_shutdown_trajectory[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
(RESERVES_WHEN_SHUT_DOWN ? reserve[gn, t] : 0.0) <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
(Pbar - (SD + i * RD)) * switch_off[gn, t+1+i] for
|
||||
i in 0:KSD
|
||||
) - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i in 0:KSU
|
||||
) - (
|
||||
(KSU >= TRU || KSU > t - 2) ? 0.0 :
|
||||
max(0, (SU + (KSU + 1) * RU) - (SD + TRD * RD)) *
|
||||
switch_on[gn, t-(KSU+1)]
|
||||
)
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
@ -0,0 +1,11 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
"""
|
||||
Formulation described in:
|
||||
|
||||
Pan, K., & Guan, Y. (2016). Strong formulations for multistage stochastic
|
||||
self-scheduling unit commitment. Operations Research, 64(6), 1482-1498.
|
||||
"""
|
||||
struct PanGua16 <: RampingFormulation end
|
Loading…
Reference in new issue