da to rt market with tests

pull/31/head
Jun He 2 years ago
parent 2fb89045cd
commit 0bb175078b

@ -10,6 +10,7 @@ include("instance/structs.jl")
include("model/formulations/base/structs.jl")
include("solution/structs.jl")
include("lmp/structs.jl")
include("market/structs.jl")
include("model/formulations/ArrCon2000/structs.jl")
include("model/formulations/CarArr2006/structs.jl")
@ -68,5 +69,6 @@ include("validation/repair.jl")
include("validation/validate.jl")
include("lmp/conventional.jl")
include("lmp/aelmp.jl")
include("market/market.jl")
end

@ -0,0 +1,220 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
solve_market(
da_path::Union{String, Vector{String}},
rt_paths::Vector{String},
settings::MarketSettings;
optimizer,
lp_optimizer = nothing,
after_build_da = nothing,
after_optimize_da = nothing,
after_build_rt = nothing,
after_optimize_rt = nothing,
)::OrderedDict
Solve the day-ahead and the real-time markets by the means of commitment status mapping.
The method firstly acquires the commitment status outcomes through the resolution of the day-ahead market;
and secondly resolves each real-time market based on the corresponding results obtained previously.
Arguments
---------
- `da_path`:
the data file path of the day-ahead market, can be stochastic.
- `rt_paths`:
the list of data file paths of the real-time markets, must be deterministic for each market.
- `settings`:
the MarketSettings which include the problem formulation, the solving method, and LMP method.
- `optimizer`:
the optimizer for solving the problem.
- `lp_optimizer`:
the linear programming optimizer for solving the LMP problem, defaults to `nothing`.
If not specified by the user, the program uses `optimizer` instead.
- `after_build_da`:
a user-defined function that allows modifying the DA model after building,
must have 2 arguments `model` and `instance` in order.
- `after_optimize_da`:
a user-defined function that allows handling additional steps after optimizing the DA model,
must have 3 arguments `solution`, `model` and `instance` in order.
- `after_build_rt`:
a user-defined function that allows modifying each RT model after building,
must have 2 arguments `model` and `instance` in order.
- `after_optimize_rt`:
a user-defined function that allows handling additional steps after optimizing each RT model,
must have 3 arguments `solution`, `model` and `instance` in order.
Examples
--------
```julia
using UnitCommitment, Cbc, HiGHS
import UnitCommitment:
MarketSettings,
XavQiuWanThi2019,
ConventionalLMP,
Formulation
solution = UnitCommitment.solve_market(
"da_instance.json",
["rt_instance_1.json", "rt_instance_2.json", "rt_instance_3.json"],
MarketSettings(
inner_method = XavQiuWanThi2019.Method(),
lmp_method = ConventionalLMP(),
formulation = Formulation(),
),
optimizer = Cbc.Optimizer,
lp_optimizer = HiGHS.Optimizer,
)
"""
function solve_market(
da_path::Union{String,Vector{String}},
rt_paths::Vector{String},
settings::MarketSettings;
optimizer,
lp_optimizer = nothing,
after_build_da = nothing,
after_optimize_da = nothing,
after_build_rt = nothing,
after_optimize_rt = nothing,
)::OrderedDict
# solve da instance as usual
@info "Solving the day-ahead market with file $da_path..."
instance_da = UnitCommitment.read(da_path)
# LP optimizer is optional: if not specified, use optimizer
lp_optimizer = lp_optimizer === nothing ? optimizer : lp_optimizer
# build and optimize the DA market
model_da, solution_da = _build_and_optimize(
instance_da,
settings,
optimizer = optimizer,
lp_optimizer = lp_optimizer,
after_build = after_build_da,
after_optimize = after_optimize_da,
)
# prepare the final solution
solution = OrderedDict()
solution["Day-ahead market"] = solution_da
solution["Real-time markets"] = OrderedDict()
# count the time, sc.time = n-slots, sc.time_step = slot-interval
# sufficient to look at only one scenario
sc = instance_da.scenarios[1]
# max time (min) of the DA market
max_time = sc.time * sc.time_step
# current time increments through the RT market list
current_time = 0
# DA market time slots in (min)
da_time_intervals = [sc.time_step * ts for ts in 1:sc.time]
# get the uc status and set each uc fixed
solution_rt = OrderedDict()
prev_initial_status = OrderedDict()
for rt_path in rt_paths
@info "Solving the real-time market with file $rt_path..."
instance_rt = UnitCommitment.read(rt_path)
# check instance time
sc = instance_rt.scenarios[1]
# check each time slot in the RT model
for ts in 1:sc.time
slot_t_end = current_time + ts * sc.time_step
# ensure this RT's slot time ub never exceeds max time of DA
slot_t_end <= max_time || error(
"The time of the real-time market cannot exceed the time of the day-ahead market.",
)
# get the slot start time to determine commitment status
slot_t_start = slot_t_end - sc.time_step
# find the index of the first DA time slot that covers slot_t_start
da_time_slot = findfirst(ti -> slot_t_start < ti, da_time_intervals)
# update thermal unit commitment status
for g in sc.thermal_units
g.commitment_status[ts] =
value(model_da[:is_on][g.name, da_time_slot]) == 1.0
end
end
# update current time by ONE slot only
current_time += sc.time_step
# set initial status for all generators in all scenarios
if !isempty(solution_rt) && !isempty(prev_initial_status)
for g in sc.thermal_units
g.initial_power =
solution_rt["Thermal production (MW)"][g.name][1]
g.initial_status = UnitCommitment._determine_initial_status(
prev_initial_status[g.name],
[solution_rt["Is on"][g.name][1]],
)
end
end
# build and optimize the RT market
_, solution_rt = _build_and_optimize(
instance_rt,
settings,
optimizer = optimizer,
lp_optimizer = lp_optimizer,
after_build = after_build_rt,
after_optimize = after_optimize_rt,
)
prev_initial_status =
OrderedDict(g.name => g.initial_status for g in sc.thermal_units)
# rt_name = first(split(last(split(rt_path, "/")), "."))
solution["Real-time markets"][rt_path] = solution_rt
end # end of for-loop that checks each RT market
return solution
end
function _build_and_optimize(
instance::UnitCommitmentInstance,
settings::MarketSettings;
optimizer,
lp_optimizer,
after_build = nothing,
after_optimize = nothing,
)::Tuple{JuMP.Model,OrderedDict}
# build model with after build
model = UnitCommitment.build_model(
instance = instance,
optimizer = optimizer,
formulation = settings.formulation,
)
if after_build !== nothing
after_build(model, instance)
end
# optimize model
UnitCommitment.optimize!(model, settings.inner_method)
solution = UnitCommitment.solution(model)
# compute lmp and add to solution
if settings.lmp_method !== nothing
lmp = UnitCommitment.compute_lmp(
model,
settings.lmp_method,
optimizer = lp_optimizer,
)
if length(instance.scenarios) == 1
solution["Locational marginal price"] = lmp
else
for sc in instance.scenarios
solution[sc.name]["Locational marginal price"] = OrderedDict(
key => val for (key, val) in lmp if key[1] == sc.name
)
end
end
end
# run after optimize with solution
if after_optimize !== nothing
after_optimize(solution, model, instance)
end
return model, solution
end

@ -0,0 +1,33 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
import ..SolutionMethod
import ..PricingMethod
import ..Formulation
"""
struct MarketSettings
inner_method::SolutionMethod = XavQiuWanThi2019.Method()
lmp_method::Union{PricingMethod, Nothing} = ConventionalLMP()
formulation::Formulation = Formulation()
end
Market setting struct, typically used to map a day-ahead market to real-time markets.
Arguments
---------
- `inner_method`:
method to solve each marketing problem.
- `lmp_method`:
a PricingMethod method to calculate the locational marginal prices.
If it is set to `nothing`, the LMPs will not be calculated.
- `formulation`:
problem formulation.
"""
Base.@kwdef struct MarketSettings
inner_method::SolutionMethod = XavQiuWanThi2019.Method()
lmp_method::Union{PricingMethod,Nothing} = ConventionalLMP()
formulation::Formulation = Formulation()
end

@ -22,6 +22,7 @@ include("transform/randomize/XavQiuAhm2021_test.jl")
include("validation/repair_test.jl")
include("lmp/conventional_test.jl")
include("lmp/aelmp_test.jl")
include("market/market_test.jl")
basedir = dirname(@__FILE__)
@ -51,6 +52,8 @@ function runtests()
validation_repair_test()
lmp_conventional_test()
lmp_aelmp_test()
simple_market_test()
stochastic_market_test()
end
return
end

@ -0,0 +1,151 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, HiGHS, JuMP
import UnitCommitment: MarketSettings
function simple_market_test()
@testset "da-to-rt simple market" begin
da_path = fixture("market_da_simple.json.gz")
rt_paths = [
fixture("market_rt1_simple.json.gz"),
fixture("market_rt2_simple.json.gz"),
fixture("market_rt3_simple.json.gz"),
fixture("market_rt4_simple.json.gz"),
]
# solve market with default setting
solution = UnitCommitment.solve_market(
da_path,
rt_paths,
MarketSettings(), # keep everything default
optimizer = optimizer_with_attributes(
Cbc.Optimizer,
"logLevel" => 0,
),
lp_optimizer = optimizer_with_attributes(
HiGHS.Optimizer,
"log_to_console" => false,
),
)
# the commitment status must agree with DA market
da_solution = solution["Day-ahead market"]
@test da_solution["Is on"]["GenY"] == [0.0, 1.0]
@test da_solution["Locational marginal price"][("s1", "B1", 1)] == 50.0
@test da_solution["Locational marginal price"][("s1", "B1", 2)] == 56.0
rt_solution = solution["Real-time markets"]
@test length(rt_solution) == 4
@test rt_solution[rt_paths[1]]["Is on"]["GenY"] == [0.0, 0.0]
@test rt_solution[rt_paths[2]]["Is on"]["GenY"] == [0.0, 1.0]
@test rt_solution[rt_paths[3]]["Is on"]["GenY"] == [1.0, 1.0]
@test rt_solution[rt_paths[4]]["Is on"]["GenY"] == [1.0]
@test length(rt_solution[rt_paths[1]]["Locational marginal price"]) == 2
@test length(rt_solution[rt_paths[2]]["Locational marginal price"]) == 2
@test length(rt_solution[rt_paths[3]]["Locational marginal price"]) == 2
@test length(rt_solution[rt_paths[4]]["Locational marginal price"]) == 1
# solve market with no lmp method
solution_no_lmp = UnitCommitment.solve_market(
da_path,
rt_paths,
MarketSettings(lmp_method = nothing), # no lmp
optimizer = optimizer_with_attributes(
Cbc.Optimizer,
"logLevel" => 0,
),
)
# the commitment status must agree with DA market
da_solution = solution_no_lmp["Day-ahead market"]
@test haskey(da_solution, "Locational marginal price") == false
rt_solution = solution_no_lmp["Real-time markets"]
@test haskey(rt_solution, "Locational marginal price") == false
end
end
function stochastic_market_test()
@testset "da-to-rt stochastic market" begin
da_path = [
fixture("market_da_simple.json.gz"),
fixture("market_da_scenario.json.gz"),
]
rt_paths = [
fixture("market_rt1_simple.json.gz"),
fixture("market_rt2_simple.json.gz"),
fixture("market_rt3_simple.json.gz"),
fixture("market_rt4_simple.json.gz"),
]
# after build and after optimize
function after_build(model, instance)
@constraint(model, model[:is_on]["GenY", 1] == 1,)
end
lmps_da = []
lmps_rt = []
function after_optimize_da(solution, model, instance)
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = optimizer_with_attributes(
HiGHS.Optimizer,
"log_to_console" => false,
),
)
return push!(lmps_da, lmp)
end
function after_optimize_rt(solution, model, instance)
lmp = UnitCommitment.compute_lmp(
model,
ConventionalLMP(),
optimizer = optimizer_with_attributes(
HiGHS.Optimizer,
"log_to_console" => false,
),
)
return push!(lmps_rt, lmp)
end
# solve the stochastic market with callbacks
solution = UnitCommitment.solve_market(
da_path,
rt_paths,
MarketSettings(), # keep everything default
optimizer = optimizer_with_attributes(
Cbc.Optimizer,
"logLevel" => 0,
),
lp_optimizer = optimizer_with_attributes(
HiGHS.Optimizer,
"log_to_console" => false,
),
after_build_da = after_build,
after_optimize_da = after_optimize_da,
after_optimize_rt = after_optimize_rt,
)
# the commitment status must agree with DA market
da_solution_sp = solution["Day-ahead market"]["market_da_simple"]
da_solution_sc = solution["Day-ahead market"]["market_da_scenario"]
@test da_solution_sc["Is on"]["GenY"] == [1.0, 1.0]
@test da_solution_sp["Locational marginal price"][(
"market_da_simple",
"B1",
1,
)] == 25.0
@test da_solution_sc["Locational marginal price"][(
"market_da_scenario",
"B1",
2,
)] == 0.0
rt_solution = solution["Real-time markets"]
@test rt_solution[rt_paths[1]]["Is on"]["GenY"] == [1.0, 1.0]
@test rt_solution[rt_paths[2]]["Is on"]["GenY"] == [1.0, 1.0]
@test rt_solution[rt_paths[3]]["Is on"]["GenY"] == [1.0, 1.0]
@test rt_solution[rt_paths[4]]["Is on"]["GenY"] == [1.0]
@test length(lmps_rt) == 4
end
end
Loading…
Cancel
Save