Break down model.jl

bugfix/formulations
Alinson S. Xavier 4 years ago
parent 4e8426beba
commit 483c793d49

@ -8,21 +8,21 @@ TIMESTAMP := $(shell date "+%Y-%m-%d %H:%M")
SRC_FILES := $(wildcard ../src/*.jl)
INSTANCES_PGLIB := \
pglib-uc/ca/2014-09-01_reserves_0 \
pglib-uc/ca/2014-09-01_reserves_1 \
pglib-uc/ca/2015-03-01_reserves_0 \
pglib-uc/ca/2015-06-01_reserves_0 \
pglib-uc/ca/Scenario400_reserves_1 \
pglib-uc/ferc/2015-01-01_lw \
pglib-uc/ferc/2015-05-01_lw \
pglib-uc/ferc/2015-07-01_hw \
pglib-uc/ferc/2015-10-01_lw \
pglib-uc/ferc/2015-12-01_lw \
pglib-uc/rts_gmlc/2020-04-03 \
pglib-uc/rts_gmlc/2020-09-20 \
pglib-uc/rts_gmlc/2020-10-27 \
pglib-uc/rts_gmlc/2020-11-25 \
pglib-uc/rts_gmlc/2020-12-23
pglib-uc/ca/2014-09-01_reserves_0 \
pglib-uc/ca/2014-09-01_reserves_1 \
pglib-uc/ca/2015-03-01_reserves_0 \
pglib-uc/ca/2015-06-01_reserves_0 \
pglib-uc/ca/Scenario400_reserves_1 \
pglib-uc/ferc/2015-01-01_lw \
pglib-uc/ferc/2015-05-01_lw \
pglib-uc/ferc/2015-07-01_hw \
pglib-uc/ferc/2015-10-01_lw \
pglib-uc/ferc/2015-12-01_lw \
pglib-uc/rts_gmlc/2020-04-03 \
pglib-uc/rts_gmlc/2020-09-20 \
pglib-uc/rts_gmlc/2020-10-27 \
pglib-uc/rts_gmlc/2020-11-25 \
pglib-uc/rts_gmlc/2020-12-23
INSTANCES_MATPOWER := \
matpower/case118/2017-02-01 \
@ -68,7 +68,7 @@ SOLUTIONS_PGLIB := $(foreach s,$(SAMPLES),$(addprefix results/,$(addsuffix .$(s)
SOLUTIONS_ORLIB := $(foreach s,$(SAMPLES),$(addprefix results/,$(addsuffix .$(s).sol.json,$(INSTANCES_ORLIB))))
SOLUTIONS_TEJADA19 := $(foreach s,$(SAMPLES),$(addprefix results/,$(addsuffix .$(s).sol.json,$(INSTANCES_TEJADA19))))
.PHONY: tables save small large clean-mps matpower pglib orlib
.PHONY: matpower pglib orlib tejada19 clean clean-mps clean-sol save tables
all: matpower pglib orlib tejada19

@ -16,49 +16,37 @@ function main()
basename, suffix = split(ARGS[1], ".")
solution_filename = "results/$basename.$suffix.sol.json"
model_filename = "results/$basename.$suffix.mps.gz"
time_limit = 60 * 20
BLAS.set_num_threads(4)
total_time = @elapsed begin
@info "Reading: $basename"
time_read = @elapsed begin
instance = UnitCommitment.read_benchmark(basename)
end
@info @sprintf("Read problem in %.2f seconds", time_read)
time_model = @elapsed begin
model = build_model(
instance = instance,
optimizer = optimizer_with_attributes(
Gurobi.Optimizer,
"Threads" => 4,
"Seed" => rand(1:1000),
),
variable_names = true,
)
end
model = UnitCommitment.build_model(
instance = instance,
optimizer = optimizer_with_attributes(
Gurobi.Optimizer,
"Threads" => 4,
"Seed" => rand(1:1000),
),
variable_names = true,
)
@info "Optimizing..."
BLAS.set_num_threads(1)
UnitCommitment.optimize!(
model,
time_limit = time_limit,
gap_limit = 1e-3,
UnitCommitment._XaQiWaTh19(time_limit = 3600.0),
)
end
@info @sprintf("Total time was %.2f seconds", total_time)
@info "Writing: $solution_filename"
solution = UnitCommitment.solution(model)
open(solution_filename, "w") do file
return JSON.print(file, solution, 2)
end
@info "Verifying solution..."
UnitCommitment.validate(instance, solution)
@info "Exporting model..."
return JuMP.write_to_file(model, model_filename)
end

@ -5,13 +5,17 @@
module UnitCommitment
include("instance/structs.jl")
include("transmission/structs.jl")
include("solution/structs.jl")
include("solution/methods/XaQiWaTh19/structs.jl")
include("import/egret.jl")
include("instance/read.jl")
include("model/build.jl")
include("model/formulations/base/bus.jl")
include("model/formulations/base/line.jl")
include("model/formulations/base/psload.jl")
include("model/formulations/base/system.jl")
include("model/formulations/base/unit.jl")
include("model/jumpext.jl")
include("solution/fix.jl")
include("solution/methods/XaQiWaTh19/enforce.jl")
@ -22,8 +26,8 @@ include("solution/optimize.jl")
include("solution/solution.jl")
include("solution/warmstart.jl")
include("solution/write.jl")
include("transforms/initcond.jl")
include("transforms/slice.jl")
include("transform/initcond.jl")
include("transform/slice.jl")
include("transmission/sensitivity.jl")
include("utils/log.jl")
include("validation/repair.jl")

@ -75,7 +75,6 @@ function build_model(;
)
end
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
@info "Computing line outage factors..."
time_lodf = @elapsed begin
lodf = UnitCommitment._line_outage_factors(
@ -95,7 +94,6 @@ function build_model(;
lodf[abs.(lodf).<lodf_cutoff] .= 0
end
end
@info "Building model..."
time_model = @elapsed begin
model = Model()
@ -106,411 +104,16 @@ function build_model(;
model[:instance] = instance
model[:isf] = isf
model[:lodf] = lodf
for field in [
:prod_above,
:segprod,
:reserve,
:is_on,
:switch_on,
:switch_off,
:net_injection,
:curtail,
:overflow,
:loads,
:startup,
:eq_startup_choose,
:eq_startup_restrict,
:eq_segprod_limit,
:eq_prod_above_def,
:eq_prod_limit,
:eq_binary_link,
:eq_switch_on_off,
:eq_ramp_up,
:eq_ramp_down,
:eq_startup_limit,
:eq_shutdown_limit,
:eq_min_uptime,
:eq_min_downtime,
:eq_power_balance,
:eq_net_injection_def,
:eq_min_reserve,
:expr_inj,
:expr_reserve,
:expr_net_injection,
]
model[field] = OrderedDict()
end
for lm in instance.lines
_add_transmission_line!(model, lm)
end
for b in instance.buses
_add_bus!(model, b)
end
for g in instance.units
_add_unit!(model, g)
end
for ps in instance.price_sensitive_loads
_add_price_sensitive_load!(model, ps)
end
_build_net_injection_eqs!(model)
_build_reserve_eqs!(model)
_build_obj_function!(model)
_add_transmission_line!.(model, instance.lines)
_add_bus!.(model, instance.buses)
_add_unit!.(model, instance.units)
_add_price_sensitive_load!.(model, instance.price_sensitive_loads)
_add_system_wide_eqs!(model)
@objective(model, Min, model[:obj])
end
@info @sprintf("Built model in %.2f seconds", time_model)
if variable_names
_set_names!(model)
end
return model
end
function _add_transmission_line!(model, lm)
obj, T = model[:obj], model[:instance].time
overflow = model[:overflow]
for t in 1:T
v = overflow[lm.name, t] = @variable(model, lower_bound = 0)
add_to_expression!(obj, v, lm.flow_limit_penalty[t])
end
end
function _add_bus!(model::JuMP.Model, b::Bus)
mip = model
net_injection = model[:expr_net_injection]
reserve = model[:expr_reserve]
curtail = model[:curtail]
for t in 1:model[:instance].time
# Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t])
# Reserves
reserve[b.name, t] = AffExpr()
# Load curtailment
curtail[b.name, t] =
@variable(mip, lower_bound = 0, upper_bound = b.load[t])
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
add_to_expression!(
model[:obj],
curtail[b.name, t],
model[:instance].power_balance_penalty[t],
)
end
end
function _add_price_sensitive_load!(model::JuMP.Model, ps::PriceSensitiveLoad)
mip = model
loads = model[:loads]
net_injection = model[:expr_net_injection]
for t in 1:model[:instance].time
# Decision variable
loads[ps.name, t] =
@variable(mip, lower_bound = 0, upper_bound = ps.demand[t])
# Objective function terms
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
# Net injection
add_to_expression!(
net_injection[ps.bus.name, t],
loads[ps.name, t],
-1.0,
)
end
end
function _add_unit!(model::JuMP.Model, g::Unit)
mip, T = model, model[:instance].time
gi, K, S = g.name, length(g.cost_segments), length(g.startup_categories)
segprod = model[:segprod]
prod_above = model[:prod_above]
reserve = model[:reserve]
startup = model[:startup]
is_on = model[:is_on]
switch_on = model[:switch_on]
switch_off = model[:switch_off]
expr_net_injection = model[:expr_net_injection]
expr_reserve = model[:expr_reserve]
if !all(g.must_run) && any(g.must_run)
error("Partially must-run units are not currently supported")
end
if g.initial_power === nothing || g.initial_status === nothing
error("Initial conditions for $(g.name) must be provided")
end
is_initially_on = (g.initial_status > 0 ? 1.0 : 0.0)
# Decision variables
for t in 1:T
for k in 1:K
segprod[gi, t, k] = @variable(model, lower_bound = 0)
end
prod_above[gi, t] = @variable(model, lower_bound = 0)
if g.provides_spinning_reserves[t]
reserve[gi, t] = @variable(model, lower_bound = 0)
else
reserve[gi, t] = 0.0
end
for s in 1:S
startup[gi, t, s] = @variable(model, binary = true)
end
if g.must_run[t]
is_on[gi, t] = 1.0
switch_on[gi, t] = (t == 1 ? 1.0 - is_initially_on : 0.0)
switch_off[gi, t] = 0.0
else
is_on[gi, t] = @variable(model, binary = true)
switch_on[gi, t] = @variable(model, binary = true)
switch_off[gi, t] = @variable(model, binary = true)
end
end
for t in 1:T
# Time-dependent start-up costs
for s in 1:S
# If unit is switching on, we must choose a startup category
model[:eq_startup_choose][gi, t, s] = @constraint(
mip,
switch_on[gi, t] == sum(startup[gi, t, s] for s in 1:S)
)
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
# The last startup category is always allowed.
if s < S
range_start = t - g.startup_categories[s+1].delay + 1
range_end = t - g.startup_categories[s].delay
range = (range_start:range_end)
initial_sum = (
g.initial_status < 0 && (g.initial_status + 1 in range) ? 1.0 : 0.0
)
model[:eq_startup_restrict][gi, t, s] = @constraint(
mip,
startup[gi, t, s] <=
initial_sum +
sum(switch_off[gi, i] for i in range if i >= 1)
)
end
# Objective function terms for start-up costs
add_to_expression!(
model[:obj],
startup[gi, t, s],
g.startup_categories[s].cost,
)
end
# Objective function terms for production costs
add_to_expression!(model[:obj], is_on[gi, t], g.min_power_cost[t])
for k in 1:K
add_to_expression!(
model[:obj],
segprod[gi, t, k],
g.cost_segments[k].cost[t],
)
end
# Production limits (piecewise-linear segments)
for k in 1:K
model[:eq_segprod_limit][gi, t, k] = @constraint(
mip,
segprod[gi, t, k] <= g.cost_segments[k].mw[t] * is_on[gi, t]
)
end
# Definition of production
model[:eq_prod_above_def][gi, t] = @constraint(
mip,
prod_above[gi, t] == sum(segprod[gi, t, k] for k in 1:K)
)
# Production limit
model[:eq_prod_limit][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[gi, t]
)
# Binary variable equations for economic units
if !g.must_run[t]
# Link binary variables
if t == 1
model[:eq_binary_link][gi, t] = @constraint(
mip,
is_on[gi, t] - is_initially_on ==
switch_on[gi, t] - switch_off[gi, t]
)
else
model[:eq_binary_link][gi, t] = @constraint(
mip,
is_on[gi, t] - is_on[gi, t-1] ==
switch_on[gi, t] - switch_off[gi, t]
)
end
# Cannot switch on and off at the same time
model[:eq_switch_on_off][gi, t] =
@constraint(mip, switch_on[gi, t] + switch_off[gi, t] <= 1)
end
# Ramp up limit
if t == 1
if is_initially_on == 1
model[:eq_ramp_up][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
)
end
else
model[:eq_ramp_up][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
prod_above[gi, t-1] + g.ramp_up_limit
)
end
# Ramp down limit
if t == 1
if is_initially_on == 1
model[:eq_ramp_down][gi, t] = @constraint(
mip,
prod_above[gi, t] >=
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
)
end
else
model[:eq_ramp_down][gi, t] = @constraint(
mip,
prod_above[gi, t] >= prod_above[gi, t-1] - g.ramp_down_limit
)
end
# Startup limit
model[:eq_startup_limit][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[gi, t] -
max(0, g.max_power[t] - g.startup_limit) * switch_on[gi, t]
)
# Shutdown limit
if g.initial_power > g.shutdown_limit
model[:eq_shutdown_limit][gi, 0] =
@constraint(mip, switch_off[gi, 1] <= 0)
end
if t < T
model[:eq_shutdown_limit][gi, t] = @constraint(
mip,
prod_above[gi, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[gi, t] -
max(0, g.max_power[t] - g.shutdown_limit) * switch_off[gi, t+1]
)
end
# Minimum up-time
model[:eq_min_uptime][gi, t] = @constraint(
mip,
sum(switch_on[gi, i] for i in (t-g.min_uptime+1):t if i >= 1) <=
is_on[gi, t]
)
# # Minimum down-time
model[:eq_min_downtime][gi, t] = @constraint(
mip,
sum(switch_off[gi, i] for i in (t-g.min_downtime+1):t if i >= 1) <= 1 - is_on[gi, t]
)
# Minimum up/down-time for initial periods
if t == 1
if g.initial_status > 0
model[:eq_min_uptime][gi, 0] = @constraint(
mip,
sum(
switch_off[gi, i] for
i in 1:(g.min_uptime-g.initial_status) if i <= T
) == 0
)
else
model[:eq_min_downtime][gi, 0] = @constraint(
mip,
sum(
switch_on[gi, i] for
i in 1:(g.min_downtime+g.initial_status) if i <= T
) == 0
)
end
end
# Add to net injection expression
add_to_expression!(
expr_net_injection[g.bus.name, t],
prod_above[g.name, t],
1.0,
)
add_to_expression!(
expr_net_injection[g.bus.name, t],
is_on[g.name, t],
g.min_power[t],
)
# Add to reserves expression
add_to_expression!(expr_reserve[g.bus.name, t], reserve[gi, t], 1.0)
end
end
function _build_obj_function!(model::JuMP.Model)
@objective(model, Min, model[:obj])
end
function _build_net_injection_eqs!(model::JuMP.Model)
T = model[:instance].time
net_injection = model[:net_injection]
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
model[:eq_net_injection_def][t, b.name] =
@constraint(model, n == model[:expr_net_injection][b.name, t])
end
for t in 1:T
model[:eq_power_balance][t] = @constraint(
model,
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
)
end
end
function _build_reserve_eqs!(model::JuMP.Model)
reserves = model[:instance].reserves
for t in 1:model[:instance].time
model[:eq_min_reserve][t] = @constraint(
model,
sum(
model[:expr_reserve][b.name, t] for b in model[:instance].buses
) >= reserves.spinning[t]
)
end
end
function _set_names!(model::JuMP.Model)
@info "Setting variable and constraint names..."
time_varnames = @elapsed begin
_set_names!(object_dictionary(model))
end
@info @sprintf("Set names in %.2f seconds", time_varnames)
end
function _set_names!(dict::Dict)
for name in keys(dict)
dict[name] isa AbstractDict || continue
for idx in keys(dict[name])
if dict[name][idx] isa AffExpr
continue
end
idx_str = join(map(string, idx), ",")
set_name(dict[name][idx], "$name[$idx_str]")
end
end
end

@ -0,0 +1,28 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
net_injection = _get(model, :expr_net_injection)
reserve = _get(model, :expr_reserve)
curtail = _get(model, :curtail)
for t in 1:model[:instance].time
# Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t])
# Reserves
reserve[b.name, t] = AffExpr()
# Load curtailment
curtail[b.name, t] =
@variable(model, lower_bound = 0, upper_bound = b.load[t])
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
add_to_expression!(
model[:obj],
curtail[b.name, t],
model[:instance].power_balance_penalty[t],
)
end
return
end

@ -0,0 +1,12 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_transmission_line!(model, lm)::Nothing
overflow = _get(model, :overflow)
for t in 1:model[:instance].time
v = overflow[lm.name, t] = @variable(model, lower_bound = 0)
add_to_expression!(model[:obj], v, lm.flow_limit_penalty[t])
end
return
end

@ -0,0 +1,27 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_price_sensitive_load!(
model::JuMP.Model,
ps::PriceSensitiveLoad,
)::Nothing
loads = _get(model, :loads)
net_injection = _get(model, :expr_net_injection)
for t in 1:model[:instance].time
# Decision variable
loads[ps.name, t] =
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
# Objective function terms
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
# Net injection
add_to_expression!(
net_injection[ps.bus.name, t],
loads[ps.name, t],
-1.0,
)
end
return
end

@ -0,0 +1,41 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_system_wide_eqs!(model::JuMP.Model)::Nothing
_add_net_injection_eqs!(model)
_add_reserve_eqs!(model)
return
end
function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
T = model[:instance].time
net_injection = _get(model, :net_injection)
eq_net_injection_def = _get(model, :eq_net_injection_def)
eq_power_balance = _get(model, :eq_power_balance)
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
eq_net_injection_def[t, b.name] =
@constraint(model, n == model[:expr_net_injection][b.name, t])
end
for t in 1:T
eq_power_balance[t] = @constraint(
model,
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
)
end
return
end
function _add_reserve_eqs!(model::JuMP.Model)::Nothing
eq_min_reserve = _get(model, :eq_min_reserve)
for t in 1:model[:instance].time
eq_min_reserve[t] = @constraint(
model,
sum(
model[:expr_reserve][b.name, t] for b in model[:instance].buses
) >= model[:instance].reserves.spinning[t]
)
end
return
end

@ -0,0 +1,349 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_unit!(model::JuMP.Model, g::Unit)
if !all(g.must_run) && any(g.must_run)
error("Partially must-run units are not currently supported")
end
if g.initial_power === nothing || g.initial_status === nothing
error("Initial conditions for $(g.name) must be provided")
end
# Variables
_add_production_vars!(model, g)
_add_reserve_vars!(model, g)
_add_startup_shutdown_vars!(model, g)
_add_status_vars!(model, g)
# Constraints and objective function
_add_min_uptime_downtime_eqs!(model, g)
_add_net_injection_eqs!(model, g)
_add_production_eqs!(model, g)
_add_ramp_eqs!(model, g)
_add_startup_shutdown_costs_eqs!(model, g)
_add_startup_shutdown_limit_eqs!(model, g)
return _add_status_eqs!(model, g)
end
_is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
function _add_production_vars!(model::JuMP.Model, g::Unit)::Nothing
prod_above = _get(model, :prod_above)
segprod = _get(model, :segprod)
for t in 1:model[:instance].time
for k in 1:length(g.cost_segments)
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
end
prod_above[g.name, t] = @variable(model, lower_bound = 0)
end
return
end
function _add_production_eqs!(model::JuMP.Model, g::Unit)::Nothing
eq_prod_above_def = _get(model, :eq_prod_above_def)
eq_prod_limit = _get(model, :eq_prod_limit)
eq_segprod_limit = _get(model, :eq_segprod_limit)
is_on = model[:is_on]
K = length(g.cost_segments)
prod_above = model[:prod_above]
reserve = model[:reserve]
segprod = model[:segprod]
for t in 1:model[:instance].time
# Objective function terms for production costs
add_to_expression!(model[:obj], is_on[g.name, t], g.min_power_cost[t])
for k in 1:K
add_to_expression!(
model[:obj],
segprod[g.name, t, k],
g.cost_segments[k].cost[t],
)
end
# Production limits (piecewise-linear segments)
for k in 1:K
eq_segprod_limit[g.name, t, k] = @constraint(
model,
segprod[g.name, t, k] <=
g.cost_segments[k].mw[t] * is_on[g.name, t]
)
end
# Definition of production
eq_prod_above_def[g.name, t] = @constraint(
model,
prod_above[g.name, t] == sum(segprod[g.name, t, k] for k in 1:K)
)
# Production limit
eq_prod_limit[g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[g.name, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t]
)
end
return
end
function _add_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
reserve = _get(model, :reserve)
for t in 1:model[:instance].time
if g.provides_spinning_reserves[t]
reserve[g.name, t] = @variable(model, lower_bound = 0)
else
reserve[g.name, t] = 0.0
end
end
return
end
function _add_reserve_eqs!(model::JuMP.Model, g::Unit)::Nothing
reserve = model[:reserve]
for t in 1:model[:instance].time
add_to_expression!(expr_reserve[g.bus.name, t], reserve[g.name, t], 1.0)
end
return
end
function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
startup = _get(model, :startup)
for t in 1:model[:instance].time
for s in 1:length(g.startup_categories)
startup[g.name, t, s] = @variable(model, binary = true)
end
end
return
end
function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
eq_shutdown_limit = _get(model, :eq_shutdown_limit)
eq_startup_limit = _get(model, :eq_startup_limit)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
T = model[:instance].time
for t in 1:T
# Startup limit
eq_startup_limit[g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[g.name, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.startup_limit) * switch_on[g.name, t]
)
# Shutdown limit
if g.initial_power > g.shutdown_limit
eq_shutdown_limit[g.name, 0] =
@constraint(model, switch_off[g.name, 1] <= 0)
end
if t < T
eq_shutdown_limit[g.name, t] = @constraint(
model,
prod_above[g.name, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
max(0, g.max_power[t] - g.shutdown_limit) *
switch_off[g.name, t+1]
)
end
end
return
end
function _add_startup_shutdown_costs_eqs!(model::JuMP.Model, g::Unit)::Nothing
eq_startup_choose = _get(model, :eq_startup_choose)
eq_startup_restrict = _get(model, :eq_startup_restrict)
S = length(g.startup_categories)
startup = model[:startup]
for t in 1:model[:instance].time
for s in 1:S
# If unit is switching on, we must choose a startup category
eq_startup_choose[g.name, t, s] = @constraint(
model,
model[:switch_on][g.name, t] ==
sum(startup[g.name, t, s] for s in 1:S)
)
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
# The last startup category is always allowed.
if s < S
range_start = t - g.startup_categories[s+1].delay + 1
range_end = t - g.startup_categories[s].delay
range = (range_start:range_end)
initial_sum = (
g.initial_status < 0 && (g.initial_status + 1 in range) ? 1.0 : 0.0
)
eq_startup_restrict[g.name, t, s] = @constraint(
model,
startup[g.name, t, s] <=
initial_sum + sum(
model[:switch_off][g.name, i] for i in range if i >= 1
)
)
end
# Objective function terms for start-up costs
add_to_expression!(
model[:obj],
startup[g.name, t, s],
g.startup_categories[s].cost,
)
end
end
return
end
function _add_status_vars!(model::JuMP.Model, g::Unit)::Nothing
is_on = _get(model, :is_on)
switch_on = _get(model, :switch_on)
switch_off = _get(model, :switch_off)
for t in 1:model[:instance].time
if g.must_run[t]
is_on[g.name, t] = 1.0
switch_on[g.name, t] = (t == 1 ? 1.0 - _is_initially_on(g) : 0.0)
switch_off[g.name, t] = 0.0
else
is_on[g.name, t] = @variable(model, binary = true)
switch_on[g.name, t] = @variable(model, binary = true)
switch_off[g.name, t] = @variable(model, binary = true)
end
end
return
end
function _add_status_eqs!(model::JuMP.Model, g::Unit)::Nothing
eq_binary_link = _get(model, :eq_binary_link)
eq_switch_on_off = _get(model, :eq_switch_on_off)
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t in 1:model[:instance].time
if !g.must_run[t]
# Link binary variables
if t == 1
eq_binary_link[g.name, t] = @constraint(
model,
is_on[g.name, t] - _is_initially_on(g) ==
switch_on[g.name, t] - switch_off[g.name, t]
)
else
eq_binary_link[g.name, t] = @constraint(
model,
is_on[g.name, t] - is_on[g.name, t-1] ==
switch_on[g.name, t] - switch_off[g.name, t]
)
end
# Cannot switch on and off at the same time
eq_switch_on_off[g.name, t] = @constraint(
model,
switch_on[g.name, t] + switch_off[g.name, t] <= 1
)
end
end
return
end
function _add_ramp_eqs!(model::JuMP.Model, g::Unit)::Nothing
prod_above = model[:prod_above]
reserve = model[:reserve]
eq_ramp_up = _get(model, :eq_ramp_up)
eq_ramp_down = _get(model, :eq_ramp_down)
for t in 1:model[:instance].time
# Ramp up limit
if t == 1
if _is_initially_on(g) == 1
eq_ramp_up[g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[g.name, t] <=
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
)
end
else
eq_ramp_up[g.name, t] = @constraint(
model,
prod_above[g.name, t] + reserve[g.name, t] <=
prod_above[g.name, t-1] + g.ramp_up_limit
)
end
# Ramp down limit
if t == 1
if _is_initially_on(g) == 1
eq_ramp_down[g.name, t] = @constraint(
model,
prod_above[g.name, t] >=
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
)
end
else
eq_ramp_down[g.name, t] = @constraint(
model,
prod_above[g.name, t] >=
prod_above[g.name, t-1] - g.ramp_down_limit
)
end
end
end
function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
is_on = model[:is_on]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
eq_min_uptime = _get(model, :eq_min_uptime)
eq_min_downtime = _get(model, :eq_min_downtime)
T = model[:instance].time
for t in 1:T
# Minimum up-time
eq_min_uptime[g.name, t] = @constraint(
model,
sum(switch_on[g.name, i] for i in (t-g.min_uptime+1):t if i >= 1) <= is_on[g.name, t]
)
# Minimum down-time
eq_min_downtime[g.name, t] = @constraint(
model,
sum(
switch_off[g.name, i] for i in (t-g.min_downtime+1):t if i >= 1
) <= 1 - is_on[g.name, t]
)
# Minimum up/down-time for initial periods
if t == 1
if g.initial_status > 0
eq_min_uptime[g.name, 0] = @constraint(
model,
sum(
switch_off[g.name, i] for
i in 1:(g.min_uptime-g.initial_status) if i <= T
) == 0
)
else
eq_min_downtime[g.name, 0] = @constraint(
model,
sum(
switch_on[g.name, i] for
i in 1:(g.min_downtime+g.initial_status) if i <= T
) == 0
)
end
end
end
end
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
expr_net_injection = model[:expr_net_injection]
expr_reserve = model[:expr_reserve]
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
for t in 1:model[:instance].time
# Add to net injection expression
add_to_expression!(
expr_net_injection[g.bus.name, t],
prod_above[g.name, t],
1.0,
)
add_to_expression!(
expr_net_injection[g.bus.name, t],
is_on[g.name, t],
g.min_power[t],
)
# Add to reserves expression
add_to_expression!(expr_reserve[g.bus.name, t], reserve[g.name, t], 1.0)
end
end

@ -18,3 +18,31 @@ end
function set_name(x::Float64, n::String)
# nop
end
function _get(model::JuMP.Model, key::Symbol)::OrderedDict
if !(key in keys(object_dictionary(model)))
model[key] = OrderedDict()
end
return model[key]
end
function _set_names!(model::JuMP.Model)
@info "Setting variable and constraint names..."
time_varnames = @elapsed begin
_set_names!(object_dictionary(model))
end
@info @sprintf("Set names in %.2f seconds", time_varnames)
end
function _set_names!(dict::Dict)
for name in keys(dict)
dict[name] isa AbstractDict || continue
for idx in keys(dict[name])
if dict[name][idx] isa AffExpr
continue
end
idx_str = join(map(string, idx), ",")
set_name(dict[name][idx], "$name[$idx_str]")
end
end
end

@ -1,3 +1,5 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
abstract type Formulation end

@ -16,14 +16,14 @@ function fix!(model::JuMP.Model, solution::AbstractDict)::Nothing
for g in instance.units
for t in 1:T
is_on_value = round(solution["Is on"][g.name][t])
production_value =
prod_value =
round(solution["Production (MW)"][g.name][t], digits = 5)
reserve_value =
round(solution["Reserve (MW)"][g.name][t], digits = 5)
JuMP.fix(is_on[g.name, t], is_on_value, force = true)
JuMP.fix(
prod_above[g.name, t],
production_value - is_on_value * g.min_power[t],
prod_value - is_on_value * g.min_power[t],
force = true,
)
JuMP.fix(reserve[g.name, t], reserve_value, force = true)

@ -9,6 +9,8 @@ import DataStructures: PriorityQueue
time_limit::Float64
gap_limit::Float64
two_phase_gap::Bool
max_violations_per_line::Int
max_violations_per_period::Int
end
Lazy constraint solution method described in:
@ -17,8 +19,8 @@ Lazy constraint solution method described in:
constraint filtering in large-scale security-constrained unit commitment.
IEEE Transactions on Power Systems, 34(3), 2457-2460.
Fields
=========
## Fields
- `time_limit`:
the time limit over the entire optimization procedure.
- `gap_limit`:
@ -26,6 +28,13 @@ Fields
- `two_phase_gap`:
if true, solve the problem with large gap tolerance first, then reduce
the gap tolerance when no further violated constraints are found.
- `max_violations_per_line`:
maximum number of violated transmission constraints to add to the
formulation per transmission line.
- `max_violations_per_period`:
maximum number of violated transmission constraints to add to the
formulation per time period.
"""
struct _XaQiWaTh19
time_limit::Float64
@ -35,11 +44,11 @@ struct _XaQiWaTh19
max_violations_per_period::Int
function _XaQiWaTh19(;
time_limit::Float64,
gap_limit::Float64,
two_phase_gap::Bool,
max_violations_per_line::Int,
max_violations_per_period::Int,
time_limit::Float64 = 86400.0,
gap_limit::Float64 = 1e-3,
two_phase_gap::Bool = true,
max_violations_per_line::Int = 1,
max_violations_per_period::Int = 5,
)
return new(
time_limit,

@ -10,14 +10,5 @@ advanced methods to accelerate the solution process and to enforce transmission
and N-1 security constraints.
"""
function optimize!(model::JuMP.Model)::Nothing
return UnitCommitment.optimize!(
model,
_XaQiWaTh19(
time_limit = 3600.0,
gap_limit = 1e-4,
two_phase_gap = true,
max_violations_per_line = 1,
max_violations_per_period = 5,
),
)
return UnitCommitment.optimize!(model, _XaQiWaTh19())
end

@ -5,8 +5,6 @@
function set_warm_start!(model::JuMP.Model, solution::AbstractDict)::Nothing
instance, T = model[:instance], model[:instance].time
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
for g in instance.units
for t in 1:T
JuMP.set_start_value(is_on[g.name, t], solution["Is on"][g.name][t])

Loading…
Cancel
Save