Reorganize files; document some methods

This commit is contained in:
2021-05-28 22:48:12 -05:00
parent e594a68492
commit 4e8426beba
30 changed files with 849 additions and 636 deletions

516
src/model/build.jl Normal file
View File

@@ -0,0 +1,516 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, MathOptInterface, DataStructures
import JuMP: value, fix, set_name
"""
function build_model(;
instance::UnitCommitmentInstance,
isf::Union{Matrix{Float64},Nothing} = nothing,
lodf::Union{Matrix{Float64},Nothing} = nothing,
isf_cutoff::Float64 = 0.005,
lodf_cutoff::Float64 = 0.001,
optimizer = nothing,
variable_names::Bool = false,
)::JuMP.Model
Build the JuMP model corresponding to the given unit commitment instance.
Arguments
=========
- `instance::UnitCommitmentInstance`:
the instance.
- `isf::Union{Matrix{Float64},Nothing} = nothing`:
the injection shift factors matrix. If not provided, it will be computed.
- `lodf::Union{Matrix{Float64},Nothing} = nothing`:
the line outage distribution factors matrix. If not provided, it will be
computed.
- `isf_cutoff::Float64 = 0.005`:
the cutoff that should be applied to the ISF matrix. Entries with magnitude
smaller than this value will be set to zero.
- `lodf_cutoff::Float64 = 0.001`:
the cutoff that should be applied to the LODF matrix. Entries with magnitude
smaller than this value will be set to zero.
- `optimizer = nothing`:
the optimizer factory that should be attached to this model (e.g. Cbc.Optimizer).
If not provided, no optimizer will be attached.
- `variable_names::Bool = false`:
If true, set variable and constraint names. Important if the model is going
to be exported to an MPS file. For large models, this can take significant
time, so it's disabled by default.
Example
=======
```jldoctest
julia> import Cbc, UnitCommitment
julia> instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
julia> model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
variable_names=true,
)
```
"""
function build_model(;
instance::UnitCommitmentInstance,
isf::Union{Matrix{Float64},Nothing} = nothing,
lodf::Union{Matrix{Float64},Nothing} = nothing,
isf_cutoff::Float64 = 0.005,
lodf_cutoff::Float64 = 0.001,
optimizer = nothing,
variable_names::Bool = false,
)::JuMP.Model
if length(instance.buses) == 1
isf = zeros(0, 0)
lodf = zeros(0, 0)
else
if isf === nothing
@info "Computing injection shift factors..."
time_isf = @elapsed begin
isf = UnitCommitment._injection_shift_factors(
lines = instance.lines,
buses = instance.buses,
)
end
@info @sprintf("Computed ISF in %.2f seconds", time_isf)
@info "Computing line outage factors..."
time_lodf = @elapsed begin
lodf = UnitCommitment._line_outage_factors(
lines = instance.lines,
buses = instance.buses,
isf = isf,
)
end
@info @sprintf("Computed LODF in %.2f seconds", time_lodf)
@info @sprintf(
"Applying PTDF and LODF cutoffs (%.5f, %.5f)",
isf_cutoff,
lodf_cutoff
)
isf[abs.(isf).<isf_cutoff] .= 0
lodf[abs.(lodf).<lodf_cutoff] .= 0
end
end
@info "Building model..."
time_model = @elapsed begin
model = Model()
if optimizer !== nothing
set_optimizer(model, optimizer)
end
model[:obj] = AffExpr()
model[:instance] = instance
model[:isf] = isf
model[:lodf] = lodf
for field in [
:prod_above,
:segprod,
:reserve,
:is_on,
:switch_on,
:switch_off,
:net_injection,
:curtail,
:overflow,
:loads,
:startup,
:eq_startup_choose,
:eq_startup_restrict,
:eq_segprod_limit,
:eq_prod_above_def,
:eq_prod_limit,
:eq_binary_link,
:eq_switch_on_off,
:eq_ramp_up,
:eq_ramp_down,
:eq_startup_limit,
:eq_shutdown_limit,
:eq_min_uptime,
:eq_min_downtime,
:eq_power_balance,
:eq_net_injection_def,
:eq_min_reserve,
:expr_inj,
:expr_reserve,
:expr_net_injection,
]
model[field] = OrderedDict()
end
for lm in instance.lines
_add_transmission_line!(model, lm)
end
for b in instance.buses
_add_bus!(model, b)
end
for g in instance.units
_add_unit!(model, g)
end
for ps in instance.price_sensitive_loads
_add_price_sensitive_load!(model, ps)
end
_build_net_injection_eqs!(model)
_build_reserve_eqs!(model)
_build_obj_function!(model)
end
@info @sprintf("Built model in %.2f seconds", time_model)
if variable_names
_set_names!(model)
end
return model
end
function _add_transmission_line!(model, lm)
obj, T = model[:obj], model[:instance].time
overflow = model[:overflow]
for t in 1:T
v = overflow[lm.name, t] = @variable(model, lower_bound = 0)
add_to_expression!(obj, v, lm.flow_limit_penalty[t])
end
end
function _add_bus!(model::JuMP.Model, b::Bus)
mip = model
net_injection = model[:expr_net_injection]
reserve = model[:expr_reserve]
curtail = model[:curtail]
for t in 1:model[:instance].time
# Fixed load
net_injection[b.name, t] = AffExpr(-b.load[t])
# Reserves
reserve[b.name, t] = AffExpr()
# Load curtailment
curtail[b.name, t] =
@variable(mip, lower_bound = 0, upper_bound = b.load[t])
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
add_to_expression!(
model[:obj],
curtail[b.name, t],
model[:instance].power_balance_penalty[t],
)
end
end
function _add_price_sensitive_load!(model::JuMP.Model, ps::PriceSensitiveLoad)
mip = model
loads = model[:loads]
net_injection = model[:expr_net_injection]
for t in 1:model[:instance].time
# Decision variable
loads[ps.name, t] =
@variable(mip, lower_bound = 0, upper_bound = ps.demand[t])
# Objective function terms
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
# Net injection
add_to_expression!(
net_injection[ps.bus.name, t],
loads[ps.name, t],
-1.0,
)
end
end
function _add_unit!(model::JuMP.Model, g::Unit)
mip, T = model, model[:instance].time
gi, K, S = g.name, length(g.cost_segments), length(g.startup_categories)
segprod = model[:segprod]
prod_above = model[:prod_above]
reserve = model[:reserve]
startup = model[:startup]
is_on = model[:is_on]
switch_on = model[:switch_on]
switch_off = model[:switch_off]
expr_net_injection = model[:expr_net_injection]
expr_reserve = model[:expr_reserve]
if !all(g.must_run) && any(g.must_run)
error("Partially must-run units are not currently supported")
end
if g.initial_power === nothing || g.initial_status === nothing
error("Initial conditions for $(g.name) must be provided")
end
is_initially_on = (g.initial_status > 0 ? 1.0 : 0.0)
# Decision variables
for t in 1:T
for k in 1:K
segprod[gi, t, k] = @variable(model, lower_bound = 0)
end
prod_above[gi, t] = @variable(model, lower_bound = 0)
if g.provides_spinning_reserves[t]
reserve[gi, t] = @variable(model, lower_bound = 0)
else
reserve[gi, t] = 0.0
end
for s in 1:S
startup[gi, t, s] = @variable(model, binary = true)
end
if g.must_run[t]
is_on[gi, t] = 1.0
switch_on[gi, t] = (t == 1 ? 1.0 - is_initially_on : 0.0)
switch_off[gi, t] = 0.0
else
is_on[gi, t] = @variable(model, binary = true)
switch_on[gi, t] = @variable(model, binary = true)
switch_off[gi, t] = @variable(model, binary = true)
end
end
for t in 1:T
# Time-dependent start-up costs
for s in 1:S
# If unit is switching on, we must choose a startup category
model[:eq_startup_choose][gi, t, s] = @constraint(
mip,
switch_on[gi, t] == sum(startup[gi, t, s] for s in 1:S)
)
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
# The last startup category is always allowed.
if s < S
range_start = t - g.startup_categories[s+1].delay + 1
range_end = t - g.startup_categories[s].delay
range = (range_start:range_end)
initial_sum = (
g.initial_status < 0 && (g.initial_status + 1 in range) ? 1.0 : 0.0
)
model[:eq_startup_restrict][gi, t, s] = @constraint(
mip,
startup[gi, t, s] <=
initial_sum +
sum(switch_off[gi, i] for i in range if i >= 1)
)
end
# Objective function terms for start-up costs
add_to_expression!(
model[:obj],
startup[gi, t, s],
g.startup_categories[s].cost,
)
end
# Objective function terms for production costs
add_to_expression!(model[:obj], is_on[gi, t], g.min_power_cost[t])
for k in 1:K
add_to_expression!(
model[:obj],
segprod[gi, t, k],
g.cost_segments[k].cost[t],
)
end
# Production limits (piecewise-linear segments)
for k in 1:K
model[:eq_segprod_limit][gi, t, k] = @constraint(
mip,
segprod[gi, t, k] <= g.cost_segments[k].mw[t] * is_on[gi, t]
)
end
# Definition of production
model[:eq_prod_above_def][gi, t] = @constraint(
mip,
prod_above[gi, t] == sum(segprod[gi, t, k] for k in 1:K)
)
# Production limit
model[:eq_prod_limit][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[gi, t]
)
# Binary variable equations for economic units
if !g.must_run[t]
# Link binary variables
if t == 1
model[:eq_binary_link][gi, t] = @constraint(
mip,
is_on[gi, t] - is_initially_on ==
switch_on[gi, t] - switch_off[gi, t]
)
else
model[:eq_binary_link][gi, t] = @constraint(
mip,
is_on[gi, t] - is_on[gi, t-1] ==
switch_on[gi, t] - switch_off[gi, t]
)
end
# Cannot switch on and off at the same time
model[:eq_switch_on_off][gi, t] =
@constraint(mip, switch_on[gi, t] + switch_off[gi, t] <= 1)
end
# Ramp up limit
if t == 1
if is_initially_on == 1
model[:eq_ramp_up][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
(g.initial_power - g.min_power[t]) + g.ramp_up_limit
)
end
else
model[:eq_ramp_up][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
prod_above[gi, t-1] + g.ramp_up_limit
)
end
# Ramp down limit
if t == 1
if is_initially_on == 1
model[:eq_ramp_down][gi, t] = @constraint(
mip,
prod_above[gi, t] >=
(g.initial_power - g.min_power[t]) - g.ramp_down_limit
)
end
else
model[:eq_ramp_down][gi, t] = @constraint(
mip,
prod_above[gi, t] >= prod_above[gi, t-1] - g.ramp_down_limit
)
end
# Startup limit
model[:eq_startup_limit][gi, t] = @constraint(
mip,
prod_above[gi, t] + reserve[gi, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[gi, t] -
max(0, g.max_power[t] - g.startup_limit) * switch_on[gi, t]
)
# Shutdown limit
if g.initial_power > g.shutdown_limit
model[:eq_shutdown_limit][gi, 0] =
@constraint(mip, switch_off[gi, 1] <= 0)
end
if t < T
model[:eq_shutdown_limit][gi, t] = @constraint(
mip,
prod_above[gi, t] <=
(g.max_power[t] - g.min_power[t]) * is_on[gi, t] -
max(0, g.max_power[t] - g.shutdown_limit) * switch_off[gi, t+1]
)
end
# Minimum up-time
model[:eq_min_uptime][gi, t] = @constraint(
mip,
sum(switch_on[gi, i] for i in (t-g.min_uptime+1):t if i >= 1) <=
is_on[gi, t]
)
# # Minimum down-time
model[:eq_min_downtime][gi, t] = @constraint(
mip,
sum(switch_off[gi, i] for i in (t-g.min_downtime+1):t if i >= 1) <= 1 - is_on[gi, t]
)
# Minimum up/down-time for initial periods
if t == 1
if g.initial_status > 0
model[:eq_min_uptime][gi, 0] = @constraint(
mip,
sum(
switch_off[gi, i] for
i in 1:(g.min_uptime-g.initial_status) if i <= T
) == 0
)
else
model[:eq_min_downtime][gi, 0] = @constraint(
mip,
sum(
switch_on[gi, i] for
i in 1:(g.min_downtime+g.initial_status) if i <= T
) == 0
)
end
end
# Add to net injection expression
add_to_expression!(
expr_net_injection[g.bus.name, t],
prod_above[g.name, t],
1.0,
)
add_to_expression!(
expr_net_injection[g.bus.name, t],
is_on[g.name, t],
g.min_power[t],
)
# Add to reserves expression
add_to_expression!(expr_reserve[g.bus.name, t], reserve[gi, t], 1.0)
end
end
function _build_obj_function!(model::JuMP.Model)
@objective(model, Min, model[:obj])
end
function _build_net_injection_eqs!(model::JuMP.Model)
T = model[:instance].time
net_injection = model[:net_injection]
for t in 1:T, b in model[:instance].buses
n = net_injection[b.name, t] = @variable(model)
model[:eq_net_injection_def][t, b.name] =
@constraint(model, n == model[:expr_net_injection][b.name, t])
end
for t in 1:T
model[:eq_power_balance][t] = @constraint(
model,
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
)
end
end
function _build_reserve_eqs!(model::JuMP.Model)
reserves = model[:instance].reserves
for t in 1:model[:instance].time
model[:eq_min_reserve][t] = @constraint(
model,
sum(
model[:expr_reserve][b.name, t] for b in model[:instance].buses
) >= reserves.spinning[t]
)
end
end
function _set_names!(model::JuMP.Model)
@info "Setting variable and constraint names..."
time_varnames = @elapsed begin
_set_names!(object_dictionary(model))
end
@info @sprintf("Set names in %.2f seconds", time_varnames)
end
function _set_names!(dict::Dict)
for name in keys(dict)
dict[name] isa AbstractDict || continue
for idx in keys(dict[name])
if dict[name][idx] isa AffExpr
continue
end
idx_str = join(map(string, idx), ",")
set_name(dict[name][idx], "$name[$idx_str]")
end
end
end

20
src/model/jumpext.jl Normal file
View File

@@ -0,0 +1,20 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
# This file extends some JuMP functions so that decision variables can be safely
# replaced by (constant) floating point numbers.
import JuMP: value, fix, set_name
function value(x::Float64)
return x
end
function fix(x::Float64, v::Float64; force)
return abs(x - v) < 1e-6 || error("Value mismatch: $x != $v")
end
function set_name(x::Float64, n::String)
# nop
end