The LMP and AELMP methods are re-designed to be dependent on the instance object instead of input files, and to have a unified API style for purposes of flexibility and consistency.pull/27/head
parent
8fc84412eb
commit
5c91dc2ac9
@ -0,0 +1,231 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP
|
||||
"""
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::AELMP.Method;
|
||||
optimizer = nothing,
|
||||
)
|
||||
|
||||
Calculates the approximate extended locational marginal prices of the given unit commitment instance.
|
||||
The AELPM does the following three things:
|
||||
1. It removes the minimum generation requirement for each generator
|
||||
2. It averages the start-up cost over the offer blocks for each generator
|
||||
3. It relaxes all the binary constraints and integrality
|
||||
Returns a dictionary of AELMPs. Each key is usually a tuple of "Bus name" and time index.
|
||||
|
||||
NOTE: this approximation method is not fully developed. The implementation is based on MISO Phase I only.
|
||||
1. It only supports Fast Start resources. More specifically, the minimum up/down time has to be zero.
|
||||
2. The method does NOT support time series of start-up costs.
|
||||
3. The method can only calculate for the first time slot if allow_offline_participation=false.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
|
||||
- `model`:
|
||||
the UnitCommitment model, must be solved before calling this function if offline participation is not allowed.
|
||||
|
||||
- `method`:
|
||||
the AELMP method, must be specified.
|
||||
|
||||
- `optimizer`:
|
||||
the optimizer for solving the LP problem.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
```julia
|
||||
|
||||
using UnitCommitment
|
||||
using Cbc
|
||||
using HiGHS
|
||||
|
||||
import UnitCommitment:
|
||||
AELMP
|
||||
|
||||
# Read benchmark instance
|
||||
instance = UnitCommitment.read("instance.json")
|
||||
|
||||
# Construct model (using state-of-the-art defaults)
|
||||
model = UnitCommitment.build_model(
|
||||
instance = instance,
|
||||
optimizer = Cbc.Optimizer,
|
||||
variable_names = true,
|
||||
)
|
||||
|
||||
# Get the AELMP with the default policy:
|
||||
# 1. Offline generators are allowed to participate in pricing
|
||||
# 2. Start-up costs are considered.
|
||||
# DO NOT use Cbc as the optimizer here. Cbc does not support dual values.
|
||||
my_aelmp_default = UnitCommitment.compute_lmp(
|
||||
model, # pre-solving is optional if allowing offline participation
|
||||
AELMP.Method(),
|
||||
optimizer = HiGHS.Optimizer
|
||||
)
|
||||
|
||||
# Get the AELMPs with an alternative policy
|
||||
# 1. Offline generators are NOT allowed to participate in pricing
|
||||
# 2. Start-up costs are considered.
|
||||
# UC model must be solved first if offline generators are NOT allowed
|
||||
UnitCommitment.optimize!(model)
|
||||
|
||||
# then call the AELMP method
|
||||
my_aelmp_alt = UnitCommitment.compute_lmp(
|
||||
model, # pre-solving is required here
|
||||
AELMP.Method(
|
||||
allow_offline_participation=false,
|
||||
consider_startup_costs=true
|
||||
),
|
||||
optimizer = HiGHS.Optimizer
|
||||
)
|
||||
|
||||
# Accessing the 'my_aelmp_alt' dictionary
|
||||
# Example: "b1" is the bus name, 1 is the first time slot
|
||||
@show my_aelmp_alt["b1", 1]
|
||||
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
function _preset_aelmp_parameters!(
|
||||
method::AELMP.Method,
|
||||
model::JuMP.Model
|
||||
)
|
||||
# this function corrects the allow_offline_participation parameter to match the model status
|
||||
# CHECK: model must be solved if allow_offline_participation=false
|
||||
if method.allow_offline_participation # do nothing
|
||||
@info "Offline generators are allowed to participate in pricing."
|
||||
else
|
||||
if isnothing(model)
|
||||
@warn "No UC model is detected. A solved UC model is required if allow_offline_participation == false."
|
||||
@warn "Setting parameter allow_offline_participation = true"
|
||||
method.allow_offline_participation = true # and do nothing else
|
||||
elseif !has_values(model)
|
||||
@warn "The UC model has no solution. A solved UC model is required if allow_offline_participation == false."
|
||||
@warn "Setting parameter allow_offline_participation = true"
|
||||
method.allow_offline_participation = true # and do nothing else
|
||||
else
|
||||
# the inputs are correct
|
||||
@info "Offline generators are NOT allowed to participate in pricing."
|
||||
@info "Offline generators will be removed for the approximation."
|
||||
end
|
||||
end
|
||||
|
||||
# CHECK: start up cost consideration
|
||||
if method.consider_startup_costs
|
||||
@info "Startup costs are considered."
|
||||
else
|
||||
@info "Startup costs are NOT considered."
|
||||
end
|
||||
end
|
||||
|
||||
function _modify_instance!(
|
||||
instance::UnitCommitmentInstance,
|
||||
model::JuMP.Model,
|
||||
method::AELMP.Method
|
||||
)
|
||||
# this function modifies the instance units (generators)
|
||||
# 1. remove (if NOT allowing) the offline generators
|
||||
if !method.allow_offline_participation
|
||||
for unit in instance.units
|
||||
# remove based on the solved UC model result
|
||||
# here, only look at the first time slot (TIME-SERIES-NOT-SUPPORTED)
|
||||
if value(model[:is_on][unit.name, 1]) == 0
|
||||
# unregister from the bus
|
||||
filter!(x -> x.name != unit.name, unit.bus.units)
|
||||
# unregister from the reserve
|
||||
for r in unit.reserves
|
||||
filter!(x -> x.name != unit.name, r.units)
|
||||
end
|
||||
end
|
||||
end
|
||||
# unregister the units
|
||||
filter!(x -> value(model[:is_on][x.name, 1]) != 0, instance.units)
|
||||
end
|
||||
|
||||
for unit in instance.units
|
||||
# 2. set min generation requirement to 0 by adding 0 to production curve and cost
|
||||
# min_power & min_costs are vectors with dimension T
|
||||
if unit.min_power[1] != 0
|
||||
first_cost_segment = unit.cost_segments[1]
|
||||
pushfirst!(unit.cost_segments, CostSegment(
|
||||
ones(size(first_cost_segment.mw)) * unit.min_power[1],
|
||||
ones(size(first_cost_segment.cost)) * unit.min_power_cost[1] / unit.min_power[1]
|
||||
))
|
||||
unit.min_power = zeros(size(first_cost_segment.mw))
|
||||
unit.min_power_cost = zeros(size(first_cost_segment.cost))
|
||||
end
|
||||
|
||||
# 3. average the start-up costs (if considering)
|
||||
# for now, consider first element only (TIME-SERIES-NOT-SUPPORTED)
|
||||
# if consider_startup_costs = false, then use the current first_startup_cost
|
||||
first_startup_cost = unit.startup_categories[1].cost
|
||||
if method.consider_startup_costs
|
||||
additional_unit_cost = first_startup_cost / unit.max_power[1]
|
||||
for i in eachindex(unit.cost_segments)
|
||||
unit.cost_segments[i].cost .+= additional_unit_cost
|
||||
end
|
||||
first_startup_cost = 0.0 # zero out the start up cost
|
||||
end
|
||||
|
||||
# 4. other adjustments...
|
||||
### FIXME in the future
|
||||
# MISO Phase I: can ONLY solve fast-starts, force all startup time to be 0
|
||||
unit.startup_categories = StartupCategory[StartupCategory(0, first_startup_cost)]
|
||||
unit.initial_status = -100
|
||||
unit.initial_power = 0
|
||||
unit.min_uptime = 0
|
||||
unit.min_downtime = 0
|
||||
### END FIXME
|
||||
end
|
||||
instance.units_by_name = Dict(g.name => g for g in instance.units)
|
||||
end
|
||||
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::AELMP.Method;
|
||||
optimizer = nothing
|
||||
)
|
||||
# Error if a linear optimizer is not specified
|
||||
if isnothing(optimizer)
|
||||
@error "Please supply a linear optimizer."
|
||||
return nothing
|
||||
end
|
||||
|
||||
@info "Calculating the AELMP..."
|
||||
@info "Building the approximation model..."
|
||||
# get the instance and make a deep copy
|
||||
instance = deepcopy(model[:instance])
|
||||
# preset the method to match the model status (solved, unsolved, not supplied)
|
||||
_preset_aelmp_parameters!(method, model)
|
||||
# modify the instance (generator)
|
||||
_modify_instance!(instance, model, method)
|
||||
|
||||
# prepare the result dictionary and solve the model
|
||||
elmp = OrderedDict()
|
||||
@info "Solving the approximation model."
|
||||
approx_model = build_model(instance=instance, variable_names=true)
|
||||
|
||||
# relax the binary constraint, and relax integrality
|
||||
for v in all_variables(approx_model)
|
||||
if is_binary(v)
|
||||
unset_binary(v)
|
||||
end
|
||||
end
|
||||
relax_integrality(approx_model)
|
||||
set_optimizer(approx_model, optimizer)
|
||||
|
||||
# solve the model
|
||||
# set_silent(approx_model)
|
||||
optimize!(approx_model)
|
||||
|
||||
# access the dual values
|
||||
@info "Getting dual values (AELMPs)."
|
||||
for (key, val) in approx_model[:eq_net_injection]
|
||||
elmp[key] = dual(val)
|
||||
end
|
||||
return elmp
|
||||
end
|
@ -0,0 +1,41 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
module AELMP
|
||||
|
||||
import ..PricingMethod
|
||||
|
||||
"""
|
||||
mutable struct Method
|
||||
allow_offline_participation::Bool,
|
||||
consider_startup_costs::Bool
|
||||
end
|
||||
|
||||
------
|
||||
|
||||
- `allow_offline_participation`:
|
||||
defaults to true.
|
||||
If true, offline assets are allowed to participate in pricing.
|
||||
- `consider_startup_costs`:
|
||||
defaults to true.
|
||||
If true, the start-up costs are averaged over each unit production; otherwise the production costs stay the same.
|
||||
|
||||
"""
|
||||
|
||||
mutable struct Method <: PricingMethod
|
||||
allow_offline_participation::Bool
|
||||
consider_startup_costs::Bool
|
||||
|
||||
function Method(;
|
||||
allow_offline_participation::Bool = true,
|
||||
consider_startup_costs::Bool = true
|
||||
)
|
||||
return new(
|
||||
allow_offline_participation,
|
||||
consider_startup_costs
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
end
|
@ -0,0 +1,123 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP
|
||||
|
||||
"""
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::LMP.Method;
|
||||
optimizer = nothing
|
||||
)
|
||||
|
||||
Calculates the locational marginal prices of the given unit commitment instance.
|
||||
Returns a dictionary of LMPs. Each key is usually a tuple of "Bus name" and time index.
|
||||
Returns nothing if there is an error in solving the LMPs.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
|
||||
- `model`:
|
||||
the UnitCommitment model, must be solved before calling this function.
|
||||
|
||||
- `method`:
|
||||
the LMP method, must be specified.
|
||||
|
||||
- `optimizer`:
|
||||
the optimizer for solving the LP problem.
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
```julia
|
||||
|
||||
using UnitCommitment
|
||||
using Cbc
|
||||
using HiGHS
|
||||
|
||||
import UnitCommitment:
|
||||
LMP
|
||||
|
||||
# Read benchmark instance
|
||||
instance = UnitCommitment.read("instance.json")
|
||||
|
||||
# Construct model (using state-of-the-art defaults)
|
||||
model = UnitCommitment.build_model(
|
||||
instance = instance,
|
||||
optimizer = Cbc.Optimizer,
|
||||
)
|
||||
|
||||
# Get the LMPs before solving the UC model
|
||||
# Error messages will be displayed and the returned value is nothing.
|
||||
# lmp = UnitCommitment.compute_lmp(model, LMP.Method(), optimizer = HiGHS.Optimizer) # DO NOT RUN
|
||||
|
||||
UnitCommitment.optimize!(model)
|
||||
|
||||
# Get the LMPs after solving the UC model (the correct way)
|
||||
# DO NOT use Cbc as the optimizer here. Cbc does not support dual values.
|
||||
# Compute regular LMP
|
||||
my_lmp = UnitCommitment.compute_lmp(
|
||||
model,
|
||||
LMP.Method(),
|
||||
optimizer = HiGHS.Optimizer,
|
||||
)
|
||||
|
||||
# Accessing the 'my_lmp' dictionary
|
||||
# Example: "b1" is the bus name, 1 is the first time slot
|
||||
@show my_lmp["b1", 1]
|
||||
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::LMP.Method;
|
||||
optimizer = nothing
|
||||
)
|
||||
# Error if a linear optimizer is not specified
|
||||
if isnothing(optimizer)
|
||||
@error "Please supply a linear optimizer."
|
||||
return nothing
|
||||
end
|
||||
|
||||
# Validate model, the UC model must be solved beforehand
|
||||
if !has_values(model)
|
||||
@error "The UC model must be solved before calculating the LMPs."
|
||||
@error "The LMPs are NOT calculated."
|
||||
return nothing
|
||||
end
|
||||
|
||||
# Prepare the LMP result dictionary
|
||||
lmp = OrderedDict()
|
||||
|
||||
# Calculate LMPs
|
||||
# Fix all binary variables to their optimal values and relax integrality
|
||||
@info "Calculating LMPs..."
|
||||
@info "Fixing all binary variables to their optimal values and relax integrality."
|
||||
vals = Dict(v => value(v) for v in all_variables(model))
|
||||
for v in all_variables(model)
|
||||
if is_binary(v)
|
||||
unset_binary(v)
|
||||
fix(v, vals[v])
|
||||
end
|
||||
end
|
||||
# fix!(model, model[:solution])
|
||||
relax_integrality(model)
|
||||
set_optimizer(model, optimizer)
|
||||
|
||||
# Solve the LP
|
||||
@info "Solving the LP..."
|
||||
JuMP.optimize!(model)
|
||||
|
||||
# Obtain dual values (LMPs) and store into the LMP dictionary
|
||||
@info "Getting dual values (LMPs)..."
|
||||
for (key, val) in model[:eq_net_injection]
|
||||
lmp[key] = dual(val)
|
||||
end
|
||||
|
||||
# Return the LMP dictionary
|
||||
@info "Calculation completed."
|
||||
return lmp
|
||||
end
|
@ -0,0 +1,18 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
"""
|
||||
Formulation described in:
|
||||
|
||||
Arroyo, J. M., & Conejo, A. J. (2000). Optimal response of a thermal unit
|
||||
to an electricity spot market. IEEE Transactions on power systems, 15(3),
|
||||
1098-1104. DOI: https://doi.org/10.1109/59.871739
|
||||
"""
|
||||
module LMP
|
||||
|
||||
import ..PricingMethod
|
||||
|
||||
struct Method <: PricingMethod end
|
||||
|
||||
end
|
@ -0,0 +1,5 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
abstract type PricingMethod end
|
Loading…
Reference in new issue