built lmp and aelmp functions and testcases

pull/24/head
Jun He 3 years ago
parent 6573bb7ea2
commit 6ddd3d6c00

@ -5,6 +5,7 @@ repo = "https://github.com/ANL-CEEESA/UnitCommitment.jl"
version = "0.3.0"
[deps]
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"

@ -54,6 +54,8 @@ include("transform/slice.jl")
include("transform/randomize/XavQiuAhm2021.jl")
include("utils/log.jl")
include("utils/benchmark.jl")
include("utils/lmp.jl")
include("utils/aelmp.jl")
include("validation/repair.jl")
include("validation/validate.jl")

@ -0,0 +1,215 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
using Clp
"""
function get_aelmp(
path::String;
optimizer = nothing,
solved_uc_model::Union{JuMP.Model, Nothing} = nothing,
allow_offline_participation::Bool = true,
consider_startup_costs::Bool = true
)
Calculates the approximate extended locational marginal prices of the given unit commitment instance.
The AELPM does the following three things:
1. It removes the minimum generation requirement for each generator
2. It averages the start-up cost over the offer blocks for each generator
3. It relaxes all the binary constraints and integrality
Returns a dictionary of AELMPs. Each key is usually a tuple of "Bus name" and time index.
NOTE: this approximation method is not fully developed. The implementation is based on MISO Phase I only.
1. It only supports Fast Start resources. More specifically, the minimum up/down time has to be zero.
2. The method does NOT support time series of start-up costs.
3. The method can only calculate for the first time slot if allow_offline_participation=false.
Arguments
---------
- `path`:
the file path of the input data.
- `optimizer`:
the optimizer for solving the problem. If not specified, the method will use Clp.
- `solved_uc_model`:
the original unit commitment model that has been solved. This is used ONLY with allow_offline_participation
being set to false.
- `allow_offline_participation`:
defaults to true. If true, offline assets are allowed to participate in pricing; otherwise those
assets are NOT allowed to participate.
- `consider_startup_costs`:
defaults to true. If true, the start-up costs are averaged over each unit production; otherwise the
production costs stay the same.
Examples
--------
```julia
using UnitCommitment
using Clp
# Get the AELMPs with the file path (default policy)
aelmp = UnitCommitment.get_aelmp(
"example.json",
optimizer = Clp.Optimizer,
)
# Get the AELMPs with an alternative policy
# Do not allow offline generators for price participation
# solve the UC model first
instance = UnitCommitment.read("example.json")
model = UnitCommitment.build_model(
instance=instance,
optimizer=Clp.Optimizer,
variable_names = true,
)
UnitCommitment.optimize!(model)
# then call the AELMP method
aelmp = UnitCommitment.get_aelmp(
"example.json",
solved_uc_model = model,
allow_offline_participation = false,
)
# Accessing the 'aelmp' dictionary
# Example: "b1" is the bus name, 1 is the first time slot
@show aelmp["b1", 1]
```
"""
function get_aelmp(
path::String;
optimizer = nothing,
solved_uc_model::Union{JuMP.Model, Nothing} = nothing,
allow_offline_participation::Bool = true,
consider_startup_costs::Bool = true
)
@info "Calculating the AELMP..."
@info "Building the approximation model..."
# get the json object from file path.
json = _read_json(path)
# if optimizer is not specified, use Clp
if isnothing(optimizer)
optimizer = Clp.Optimizer
end
# CHECK: model must be solved if allow_offline_participation=false
if allow_offline_participation # do nothing
@info "Offline generators are allowed to participate in pricing."
else
if isnothing(solved_uc_model)
@warn "No UC model is detected. A solved UC model is required if allow_offline_participation == false."
@warn "Setting parameter allow_offline_participation = true"
allow_offline_participation = true # and do nothing else
elseif !has_values(solved_uc_model)
@warn "The UC model has no solution. A solved UC model is required if allow_offline_participation == false."
@warn "Setting parameter allow_offline_participation = true"
allow_offline_participation = true # and do nothing else
else
# the inputs are correct
@info "Offline generators are NOT allowed to participate in pricing."
@info "Offline generators will be removed for the approximation."
end
end
# CHECK: start up cost consideration
if consider_startup_costs
@info "Startup costs are considered."
else
@info "Startup costs are NOT considered."
end
# modify the data for each generator
for (unit_name, dict) in json["Generators"]
# 1. remove (if NOT allowing) the offline generators
if !allow_offline_participation
# remove based on the solved UC model result
# here, only look at the first time slot (TIME-SERIES-NOT-SUPPORTED)
is_on = value(solved_uc_model[:is_on][unit_name, 1])
if is_on == 0
delete!(json["Generators"], unit_name)
continue
end
end
# 2. set min generation requirement to 0 by adding 0 to production curve and cost
cost_curve_mw = dict["Production cost curve (MW)"]
cost_curve_dollar = dict["Production cost curve (\$)"]
if cost_curve_mw[1] != 0
pushfirst!(cost_curve_mw, 0)
pushfirst!(cost_curve_dollar, 0)
dict["Production cost curve (MW)"] = cost_curve_mw
dict["Production cost curve (\$)"] = cost_curve_dollar
end
# 3. average the start-up costs (if considering)
# for now, consider first element only (TIME-SERIES-NOT-SUPPORTED)
first_startup_cost = dict["Startup costs (\$)"][1]
if consider_startup_costs
additional_unit_cost = first_startup_cost / cost_curve_mw[end]
for i in eachindex(cost_curve_dollar)
cost_curve_dollar[i] += additional_unit_cost * cost_curve_mw[i]
end
dict["Production cost curve (\$)"] = cost_curve_dollar
dict["Startup costs (\$)"] = [0.0]
else
# or do nothing (just keep the first cost)
dict["Startup costs (\$)"] = [first_startup_cost]
end
# 4. other adjustments...
### FIXME in the future
# MISO Phase I: can ONLY solve fast-starts
# here, force all startup time to be 0
dict["Startup delays (h)"] = [0]
dict["Initial status (h)"] = -100
dict["Initial power (MW)"] = 0
dict["Minimum uptime (h)"] = 0
dict["Minimum downtime (h)"] = 0
### END FIXME
# update
json["Generators"][unit_name] = dict
end
# prepare the result dictionary and solve the model
elmp = Dict()
# init the model
@info "Solving the approximation model."
instance = _from_json(json) # obtain the instance object
model = build_model(
instance=instance,
variable_names=true,
)
# relax the binary constraint, and relax integrality
for v in all_variables(model)
if is_binary(v)
unset_binary(v)
end
end
relax_integrality(model)
set_optimizer(model, optimizer)
# solve the model
set_silent(model)
optimize!(model)
# access the dual values
@info "Getting dual values (AELMPs)."
for (key, val) in model[:eq_net_injection]
elmp[key] = dual(val)
end
return elmp
end

@ -0,0 +1,121 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP, Clp
"""
function get_lmp(
model::JuMP.Model;
optimizer = nothing,
verbose::Bool=true
)
Calculates the locational marginal prices of the given unit commitment instance.
Returns a dictionary of LMPs. Each key is usually a tuple of "Bus name" and time index.
Returns false if there is an error in solving the LMPs.
Arguments
---------
- `model`:
the UnitCommitment model, must be solved before calling this function.
- `optimizer`:
the optimizer for solving the LP problem. If not specified, the method will use Clp.
- `verbose`:
defaults to true. If false, all error/info messages will be suppressed.
Examples
--------
```julia
# Read benchmark instance
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Construct model (using state-of-the-art defaults)
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
)
# Get the LMPs before solving the UC model
# Error messages will be displayed and the returned value is false.
# lmp = UnitCommitment.get_lmp(model)
UnitCommitment.optimize!(model)
# Get the LMPs after solving the UC model (the correct way)
# DO NOT use Cbc as the optimizer here. Cbc does not support dual values.
lmp = UnitCommitment.get_lmp(
model,
optimizer=Clp.Optimizer
)
# Accessing the 'lmp' dictionary
# Example: "b1" is the bus name, 1 is the first time slot
@show lmp["b1", 1]
```
"""
function get_lmp(
model::JuMP.Model;
optimizer = nothing,
verbose::Bool=true
)
# Validate model, the UC model must be solved beforehand
if !has_values(model)
if verbose
@error "The UC model must be solved before calculating the LMPs."
@error "The LMPs are NOT calculated."
end
return false
end
# if optimizer is not specified, use Clp
if isnothing(optimizer)
optimizer = Clp.Optimizer
end
# Prepare the LMP result dictionary
lmp = Dict()
# Calculate LMPs
# Fix all binary variables to their optimal values and relax integrality
if verbose
@info "Calculating LMPs..."
@info "Fixing all binary variables to their optimal values and relax integrality."
end
vals = Dict(v => value(v) for v in all_variables(model))
for v in all_variables(model)
if is_binary(v)
unset_binary(v)
fix(v, vals[v])
end
end
relax_integrality(model)
set_optimizer(model, optimizer)
# Solve the LP
if verbose
@info "Solving the LP."
end
JuMP.optimize!(model)
# Obtain dual values (LMPs) and store into the LMP dictionary
if verbose
@info "Getting dual values (LMPs)."
end
for (key, val) in model[:eq_net_injection]
lmp[key] = dual(val)
end
# Return the LMP dictionary
if verbose
@info "Calculation completed."
end
return lmp
end

@ -1,5 +1,6 @@
[deps]
Cbc = "9961bab8-2fa3-5c5a-9d89-47fab24efd76"
Clp = "e2554f3b-3117-50c0-817c-e040a3ddf72d"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
GZip = "92fee26a-97fe-5a0c-ad85-20a5f3185b63"

@ -0,0 +1,30 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, JuMP
@testset "aelmp" begin
path = "$FIXTURES/aelmp_simple.json.gz"
# policy 1: allow offlines; consider startups
aelmp_1 = UnitCommitment.get_aelmp(path)
@test aelmp_1["B1", 1] 231.7 atol = 0.1
# policy 2: do not allow offlines; but consider startups
# model has to be solved first
instance = UnitCommitment.read(path)
model = UnitCommitment.build_model(
instance=instance,
optimizer=Cbc.Optimizer,
variable_names = true,
)
JuMP.set_silent(model)
UnitCommitment.optimize!(model)
aelmp_2 = UnitCommitment.get_aelmp(
path,
solved_uc_model = model,
allow_offline_participation = false,
)
@test aelmp_2["B1", 1] 274.3 atol = 0.1
end

@ -0,0 +1,52 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, Clp, JuMP
function solve_lmp_testcase(path::String)
instance = UnitCommitment.read(path)
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
variable_names = true,
)
# set silent, solve the UC
JuMP.set_silent(model)
UnitCommitment.optimize!(model)
# get the lmp
lmp = UnitCommitment.get_lmp(
model,
optimizer=Clp.Optimizer,
verbose=false
)
return lmp
end
@testset "lmp" begin
# instance 1
path = "$FIXTURES/lmp_simple_test_1.json.gz"
lmp = solve_lmp_testcase(path)
@test lmp["A", 1] == 50.0
@test lmp["B", 1] == 50.0
# instance 2
path = "$FIXTURES/lmp_simple_test_2.json.gz"
lmp = solve_lmp_testcase(path)
@test lmp["A", 1] == 50.0
@test lmp["B", 1] == 60.0
# instance 3
path = "$FIXTURES/lmp_simple_test_3.json.gz"
lmp = solve_lmp_testcase(path)
@test lmp["A", 1] == 50.0
@test lmp["B", 1] == 70.0
@test lmp["C", 1] == 100.0
# instance 4
path = "$FIXTURES/lmp_simple_test_4.json.gz"
lmp = solve_lmp_testcase(path)
@test lmp["A", 1] == 50.0
@test lmp["B", 1] == 70.0
@test lmp["C", 1] == 90.0
end

@ -39,4 +39,8 @@ FIXTURES = "$(@__DIR__)/fixtures"
@testset "validation" begin
include("validation/repair_test.jl")
end
@testset "lmp" begin
include("lmp/lmp_test.jl")
include("lmp/aelmp_test.jl")
end
end

Loading…
Cancel
Save