parent
1fdbce2ffa
commit
7a01dd436f
@ -0,0 +1,124 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::_MorLatRam13,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
RESERVES_WHEN_RAMP_UP = true
|
||||
RESERVES_WHEN_RAMP_DOWN = true
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
SU = g.startup_limit
|
||||
SD = g.shutdown_limit
|
||||
RU = g.ramp_up_limit
|
||||
RD = g.ramp_down_limit
|
||||
gn = g.name
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_str_ramp_up)
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t in 1:model[:instance].time
|
||||
time_invariant =
|
||||
(t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
|
||||
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
end
|
||||
else
|
||||
# amk: without accounting for time-varying min power terms,
|
||||
# we might get an infeasible schedule, e.g. if min_power[t-1] = 0, min_power[t] = 10
|
||||
# and ramp_up_limit = 5, the constraint (p'(t) + r(t) <= p'(t-1) + RU)
|
||||
# would be satisfied with p'(t) = r(t) = p'(t-1) = 0
|
||||
# Note that if switch_on[t] = 1, then eqns (20) or (21) go into effect
|
||||
if !time_invariant
|
||||
# Use equation (24) instead
|
||||
SU = g.startup_limit
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[gn, t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
|
||||
)
|
||||
else
|
||||
# Equation (26) in Kneuven et al. (2020)
|
||||
# TODO: what if RU < SU? places too stringent upper bound
|
||||
# prod_above[gn, t] when starting up, and creates diff with (24).
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) -
|
||||
prod_above[gn, t-1] <= RU
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
# Ramp down limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
# TODO If RD < SD, or more specifically if
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
# amk: similar to ramp_up, need to account for time-dependent min_power
|
||||
if !time_invariant
|
||||
# Revert to (25)
|
||||
SD = g.shutdown_limit
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[gn, t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
RD * is_on[gn, t] + SD * switch_off[gn, t]
|
||||
)
|
||||
else
|
||||
# Equation (27) in Kneuven et al. (2020)
|
||||
# TODO: Similar to above, what to do if shutting down in time t
|
||||
# and RD < SD? There is a difference with (25).
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t-1] +
|
||||
(RESERVES_WHEN_RAMP_DOWN ? reserve[gn, t-1] : 0.0) -
|
||||
prod_above[gn, t] <= RD
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
@ -0,0 +1,12 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
"""
|
||||
Formulation described in:
|
||||
|
||||
Morales-España, G., Latorre, J. M., & Ramos, A. (2013). Tight and compact
|
||||
MILP formulation for the thermal unit commitment problem. IEEE Transactions
|
||||
on Power Systems, 28(4), 4897-4908.
|
||||
"""
|
||||
mutable struct _MorLatRam13 <: _RampingFormulation end
|
Loading…
Reference in new issue