Update benchmark scripts

This commit is contained in:
2021-05-30 21:45:07 -05:00
parent f01562e37f
commit 7db8d723f7
6 changed files with 246 additions and 222 deletions

View File

@@ -5,71 +5,84 @@
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib
import matplotlib.pyplot as plt
import sys
# easy_cutoff = 120
b1 = pd.read_csv(sys.argv[1], index_col=0)
b2 = pd.read_csv(sys.argv[2], index_col=0)
c1 = b1.groupby(["Group", "Instance", "Sample"])[
["Optimization time (s)", "Primal bound"]
].mean()
c2 = b2.groupby(["Group", "Instance", "Sample"])[
["Optimization time (s)", "Primal bound"]
].mean()
c1.columns = ["A Time (s)", "A Value"]
c2.columns = ["B Time (s)", "B Value"]
merged = pd.concat([c1, c2], axis=1)
merged["Speedup"] = merged["A Time (s)"] / merged["B Time (s)"]
merged["Time diff (s)"] = merged["B Time (s)"] - merged["A Time (s)"]
merged["Value diff (%)"] = np.round(
(merged["B Value"] - merged["A Value"]) / merged["A Value"] * 100.0, 5
matplotlib.use("Agg")
sns.set("talk")
sns.set_palette(
[
"#9b59b6",
"#3498db",
"#95a5a6",
"#e74c3c",
"#34495e",
"#2ecc71",
]
)
merged.loc[merged.loc[:, "B Time (s)"] <= 0, "Speedup"] = float("nan")
merged.loc[merged.loc[:, "B Time (s)"] <= 0, "Time diff (s)"] = float("nan")
# merged = merged[(merged["A Time (s)"] >= easy_cutoff) | (merged["B Time (s)"] >= easy_cutoff)]
merged.reset_index(inplace=True)
merged["Name"] = merged["Group"] + "/" + merged["Instance"]
# merged = merged.sort_values(by="Speedup", ascending=False)
filename = sys.argv[1]
m1 = sys.argv[2]
m2 = sys.argv[3]
k = len(merged.groupby("Name"))
plt.figure(figsize=(12, 0.50 * k))
plt.rcParams["xtick.bottom"] = plt.rcParams["xtick.labelbottom"] = True
plt.rcParams["xtick.top"] = plt.rcParams["xtick.labeltop"] = True
sns.set_style("whitegrid")
sns.set_palette("Set1")
# Prepare data
data = pd.read_csv(filename, index_col=0)
b1 = (
data[data["Group"] == m1]
.groupby(["Instance", "Sample"])
.mean()[["Optimization time (s)"]]
)
b2 = (
data[data["Group"] == m2]
.groupby(["Instance", "Sample"])
.mean()[["Optimization time (s)"]]
)
b1.columns = [f"{m1} time (s)"]
b2.columns = [f"{m2} time (s)"]
merged = pd.merge(b1, b2, left_index=True, right_index=True).reset_index().dropna()
merged["Speedup"] = merged[f"{m1} time (s)"] / merged[f"{m2} time (s)"]
merged["Group"] = merged["Instance"].str.replace(r"\/.*", "", regex=True)
merged = merged.sort_values(by=["Instance", "Sample"], ascending=True)
merged = merged[(merged[f"{m1} time (s)"] > 0) & (merged[f"{m2} time (s)"] > 0)]
# Plot results
k1 = len(merged.groupby("Instance").mean())
k2 = len(merged.groupby("Group").mean())
k = k1 + k2
fig = plt.figure(
constrained_layout=True,
figsize=(15, max(5, 0.75 * k)),
)
plt.suptitle(f"{m1} vs {m2}")
gs1 = fig.add_gridspec(nrows=k, ncols=1)
ax1 = fig.add_subplot(gs1[0:k1, 0:1])
ax2 = fig.add_subplot(gs1[k1:, 0:1], sharex=ax1)
sns.barplot(
data=merged,
x="Speedup",
y="Name",
color="tab:red",
y="Instance",
color="tab:purple",
capsize=0.15,
errcolor="k",
errwidth=1.25,
ax=ax1,
)
plt.axvline(1.0, linestyle="--", color="k")
plt.tight_layout()
sns.barplot(
data=merged,
x="Speedup",
y="Group",
color="tab:purple",
capsize=0.15,
errcolor="k",
errwidth=1.25,
ax=ax2,
)
ax1.axvline(1.0, linestyle="--", color="k")
ax2.axvline(1.0, linestyle="--", color="k")
print("Writing tables/compare.png")
plt.savefig("tables/compare.png", dpi=150)
print("Writing tables/compare.csv")
merged.loc[
:,
[
"Group",
"Instance",
"Sample",
"A Time (s)",
"B Time (s)",
"Speedup",
"Time diff (s)",
"A Value",
"B Value",
"Value diff (%)",
],
].to_csv("tables/compare.csv", index_label="Index")
merged.to_csv("tables/compare.csv", index_label="Index")