mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 16:28:51 -06:00
new formatting
This commit is contained in:
@@ -32,7 +32,7 @@ function _add_ramp_eqs!(
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
@@ -49,8 +49,12 @@ function _add_ramp_eqs!(
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0)
|
||||
min_prod_last_period = g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[gn, t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
|
||||
# Equation (24) in Kneuven et al. (2020)
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
@@ -77,10 +81,11 @@ function _add_ramp_eqs!(
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ? reserve[gn, t-1] :
|
||||
0.0
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[gn, t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period = g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
|
||||
# Equation (25) in Kneuven et al. (2020)
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
|
||||
@@ -18,16 +18,18 @@ function _add_production_piecewise_linear_eqs!(
|
||||
prod_above = model[:prod_above]
|
||||
|
||||
K = length(g.cost_segments)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
gn = g.name
|
||||
for k = 1:K
|
||||
for k in 1:K
|
||||
# Equation (45) in Kneuven et al. (2020)
|
||||
# NB: when reading instance, UnitCommitment.jl already calculates
|
||||
# difference between max power for segments k and k-1 so the
|
||||
# value of cost_segments[k].mw[t] is the max production *for
|
||||
# that segment*
|
||||
eq_segprod_limit[gn, t, k] =
|
||||
@constraint(model, segprod[gn, t, k] <= g.cost_segments[k].mw[t])
|
||||
eq_segprod_limit[gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <= g.cost_segments[k].mw[t]
|
||||
)
|
||||
|
||||
# Also add this as an explicit upper bound on segprod to make the
|
||||
# solver's work a bit easier
|
||||
@@ -35,12 +37,18 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] =
|
||||
@constraint(model, prod_above[gn, t] == sum(segprod[gn, t, k] for k = 1:K))
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(model[:obj], segprod[gn, t, k], g.cost_segments[k].cost[t])
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@@ -33,8 +33,9 @@ function _add_ramp_eqs!(
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t = 1:model[:instance].time
|
||||
time_invariant = (t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
|
||||
for t in 1:model[:instance].time
|
||||
time_invariant =
|
||||
(t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
|
||||
|
||||
# if t > 1 && !time_invariant
|
||||
# @warn(
|
||||
@@ -47,8 +48,10 @@ function _add_ramp_eqs!(
|
||||
# end
|
||||
|
||||
max_prod_this_period =
|
||||
prod_above[gn, t] +
|
||||
(RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0)
|
||||
prod_above[gn, t] + (
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[gn, t] : 0.0
|
||||
)
|
||||
min_prod_last_period = 0.0
|
||||
if t > 1 && time_invariant
|
||||
min_prod_last_period = prod_above[gn, t-1]
|
||||
@@ -58,7 +61,8 @@ function _add_ramp_eqs!(
|
||||
eq_str_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
(SU - g.min_power[t] - RU) * switch_on[gn, t] + RU * is_on[gn, t]
|
||||
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
|
||||
RU * is_on[gn, t]
|
||||
)
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
if t > 1
|
||||
@@ -99,7 +103,8 @@ function _add_ramp_eqs!(
|
||||
eq_str_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
(SD - g.min_power[t] - RD) * switch_off[gn, t] + RD * on_last_period
|
||||
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
|
||||
RD * on_last_period
|
||||
)
|
||||
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
|
||||
# Add back in min power
|
||||
|
||||
@@ -9,8 +9,8 @@ function _add_production_vars!(
|
||||
)::Nothing
|
||||
prod_above = _init(model, :prod_above)
|
||||
segprod = _init(model, :segprod)
|
||||
for t = 1:model[:instance].time
|
||||
for k = 1:length(g.cost_segments)
|
||||
for t in 1:model[:instance].time
|
||||
for k in 1:length(g.cost_segments)
|
||||
segprod[g.name, t, k] = @variable(model, lower_bound = 0)
|
||||
end
|
||||
prod_above[g.name, t] = @variable(model, lower_bound = 0)
|
||||
@@ -28,7 +28,7 @@ function _add_production_limit_eqs!(
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
gn = g.name
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# Objective function terms for production costs
|
||||
# Part of (69) of Kneuven et al. (2020) as C^R_g * u_g(t) term
|
||||
add_to_expression!(model[:obj], is_on[gn, t], g.min_power_cost[t])
|
||||
|
||||
@@ -21,13 +21,15 @@ function _add_production_piecewise_linear_eqs!(
|
||||
is_on = model[:is_on]
|
||||
|
||||
K = length(g.cost_segments)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] =
|
||||
@constraint(model, prod_above[gn, t] == sum(segprod[gn, t, k] for k = 1:K))
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
for k = 1:K
|
||||
for k in 1:K
|
||||
# Equation (42) in Kneuven et al. (2020)
|
||||
# Without this, solvers will add a lot of implied bound cuts to
|
||||
# have this same effect.
|
||||
@@ -46,7 +48,11 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(model[:obj], segprod[gn, t, k], g.cost_segments[k].cost[t])
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
)
|
||||
end
|
||||
end
|
||||
return
|
||||
|
||||
@@ -10,7 +10,7 @@ function _add_status_vars!(
|
||||
is_on = _init(model, :is_on)
|
||||
switch_on = _init(model, :switch_on)
|
||||
switch_off = _init(model, :switch_off)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
if g.must_run[t]
|
||||
is_on[g.name, t] = 1.0
|
||||
switch_on[g.name, t] = (t == 1 ? 1.0 - _is_initially_on(g) : 0.0)
|
||||
@@ -34,7 +34,7 @@ function _add_status_eqs!(
|
||||
is_on = model[:is_on]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
if !g.must_run[t]
|
||||
# Link binary variables
|
||||
if t == 1
|
||||
@@ -51,8 +51,10 @@ function _add_status_eqs!(
|
||||
)
|
||||
end
|
||||
# Cannot switch on and off at the same time
|
||||
eq_switch_on_off[g.name, t] =
|
||||
@constraint(model, switch_on[g.name, t] + switch_off[g.name, t] <= 1)
|
||||
eq_switch_on_off[g.name, t] = @constraint(
|
||||
model,
|
||||
switch_on[g.name, t] + switch_off[g.name, t] <= 1
|
||||
)
|
||||
end
|
||||
end
|
||||
return
|
||||
|
||||
@@ -26,12 +26,12 @@ function _add_production_piecewise_linear_eqs!(
|
||||
switch_on = model[:switch_on]
|
||||
switch_off = model[:switch_off]
|
||||
|
||||
for t = 1:T
|
||||
for k = 1:K
|
||||
for t in 1:T
|
||||
for k in 1:K
|
||||
# Pbar^{k-1)
|
||||
Pbar0 =
|
||||
g.min_power[t] +
|
||||
(k > 1 ? sum(g.cost_segments[ell].mw[t] for ell = 1:k-1) : 0.0)
|
||||
(k > 1 ? sum(g.cost_segments[ell].mw[t] for ell in 1:k-1) : 0.0)
|
||||
# Pbar^k
|
||||
Pbar1 = g.cost_segments[k].mw[t] + Pbar0
|
||||
|
||||
@@ -61,7 +61,8 @@ function _add_production_piecewise_linear_eqs!(
|
||||
eq_segprod_limit_a[gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] - Cv * switch_on[gn, t] -
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? Cw * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
else
|
||||
@@ -69,7 +70,8 @@ function _add_production_piecewise_linear_eqs!(
|
||||
eq_segprod_limit_b[gn, t, k] = @constraint(
|
||||
model,
|
||||
segprod[gn, t, k] <=
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] - Cv * switch_on[gn, t] -
|
||||
g.cost_segments[k].mw[t] * is_on[gn, t] -
|
||||
Cv * switch_on[gn, t] -
|
||||
(t < T ? max(0, Cv - Cw) * switch_off[gn, t+1] : 0.0)
|
||||
)
|
||||
|
||||
@@ -85,12 +87,18 @@ function _add_production_piecewise_linear_eqs!(
|
||||
|
||||
# Definition of production
|
||||
# Equation (43) in Kneuven et al. (2020)
|
||||
eq_prod_above_def[gn, t] =
|
||||
@constraint(model, prod_above[gn, t] == sum(segprod[gn, t, k] for k = 1:K))
|
||||
eq_prod_above_def[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] == sum(segprod[gn, t, k] for k in 1:K)
|
||||
)
|
||||
|
||||
# Objective function
|
||||
# Equation (44) in Kneuven et al. (2020)
|
||||
add_to_expression!(model[:obj], segprod[gn, t, k], g.cost_segments[k].cost[t])
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
segprod[gn, t, k],
|
||||
g.cost_segments[k].cost[t],
|
||||
)
|
||||
|
||||
# Also add an explicit upper bound on segprod to make the solver's
|
||||
# work a bit easier
|
||||
|
||||
@@ -32,8 +32,9 @@ function _add_ramp_eqs!(
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t = 1:model[:instance].time
|
||||
time_invariant = (t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
|
||||
for t in 1:model[:instance].time
|
||||
time_invariant =
|
||||
(t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
|
||||
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
@@ -59,8 +60,8 @@ function _add_ramp_eqs!(
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ? reserve[gn, t] :
|
||||
0.0
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[gn, t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
@@ -75,7 +76,8 @@ function _add_ramp_eqs!(
|
||||
# prod_above[gn, t] when starting up, and creates diff with (24).
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + (RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) -
|
||||
prod_above[gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) -
|
||||
prod_above[gn, t-1] <= RU
|
||||
)
|
||||
end
|
||||
@@ -105,7 +107,8 @@ function _add_ramp_eqs!(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[gn, t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period = g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
|
||||
@@ -11,27 +11,30 @@ function _add_startup_cost_eqs!(
|
||||
eq_startup_restrict = _init(model, :eq_startup_restrict)
|
||||
S = length(g.startup_categories)
|
||||
startup = model[:startup]
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# If unit is switching on, we must choose a startup category
|
||||
eq_startup_choose[g.name, t] = @constraint(
|
||||
model,
|
||||
model[:switch_on][g.name, t] == sum(startup[g.name, t, s] for s = 1:S)
|
||||
model[:switch_on][g.name, t] ==
|
||||
sum(startup[g.name, t, s] for s in 1:S)
|
||||
)
|
||||
|
||||
for s = 1:S
|
||||
for s in 1:S
|
||||
# If unit has not switched off in the last `delay` time periods, startup category is forbidden.
|
||||
# The last startup category is always allowed.
|
||||
if s < S
|
||||
range_start = t - g.startup_categories[s+1].delay + 1
|
||||
range_end = t - g.startup_categories[s].delay
|
||||
range = (range_start:range_end)
|
||||
initial_sum =
|
||||
(g.initial_status < 0 && (g.initial_status + 1 in range) ? 1.0 : 0.0)
|
||||
initial_sum = (
|
||||
g.initial_status < 0 && (g.initial_status + 1 in range) ? 1.0 : 0.0
|
||||
)
|
||||
eq_startup_restrict[g.name, t, s] = @constraint(
|
||||
model,
|
||||
startup[g.name, t, s] <=
|
||||
initial_sum +
|
||||
sum(model[:switch_off][g.name, i] for i in range if i >= 1)
|
||||
initial_sum + sum(
|
||||
model[:switch_off][g.name, i] for i in range if i >= 1
|
||||
)
|
||||
)
|
||||
end
|
||||
|
||||
|
||||
@@ -14,8 +14,10 @@ function _add_ramp_eqs!(
|
||||
gn = g.name
|
||||
reserve = model[:reserve]
|
||||
eq_str_prod_limit = _init(model, :eq_str_prod_limit)
|
||||
eq_prod_limit_ramp_up_extra_period = _init(model, :eq_prod_limit_ramp_up_extra_period)
|
||||
eq_prod_limit_shutdown_trajectory = _init(model, :eq_prod_limit_shutdown_trajectory)
|
||||
eq_prod_limit_ramp_up_extra_period =
|
||||
_init(model, :eq_prod_limit_ramp_up_extra_period)
|
||||
eq_prod_limit_shutdown_trajectory =
|
||||
_init(model, :eq_prod_limit_shutdown_trajectory)
|
||||
UT = g.min_uptime
|
||||
SU = g.startup_limit # startup rate, i.e., max production right after startup
|
||||
SD = g.shutdown_limit # shutdown rate, i.e., max production right before shutdown
|
||||
@@ -31,7 +33,7 @@ function _add_ramp_eqs!(
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
|
||||
for t = 1:T
|
||||
for t in 1:T
|
||||
Pbar = g.max_power[t]
|
||||
if Pbar < 1e-7
|
||||
# Skip this time period if max power = 0
|
||||
@@ -52,10 +54,13 @@ function _add_ramp_eqs!(
|
||||
# then switch_off[gn, t+1] = 0
|
||||
eq_str_prod_limit[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + g.min_power[t] * is_on[gn, t] + reserve[gn, t] <=
|
||||
Pbar * is_on[gn, t] - (t < T ? (Pbar - SD) * switch_off[gn, t+1] : 0.0) - sum(
|
||||
prod_above[gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[gn, t] <=
|
||||
Pbar * is_on[gn, t] -
|
||||
(t < T ? (Pbar - SD) * switch_off[gn, t+1] : 0.0) - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i = 0:min(UT - 2, TRU, t - 1)
|
||||
i in 0:min(UT - 2, TRU, t - 1)
|
||||
)
|
||||
)
|
||||
|
||||
@@ -64,10 +69,12 @@ function _add_ramp_eqs!(
|
||||
# Covers an additional time period of the ramp-up trajectory, compared to (38)
|
||||
eq_prod_limit_ramp_up_extra_period[gn, t] = @constraint(
|
||||
model,
|
||||
prod_above[gn, t] + g.min_power[t] * is_on[gn, t] + reserve[gn, t] <=
|
||||
prod_above[gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
reserve[gn, t] <=
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i = 0:min(UT - 1, TRU, t - 1)
|
||||
i in 0:min(UT - 1, TRU, t - 1)
|
||||
)
|
||||
)
|
||||
end
|
||||
@@ -82,9 +89,13 @@ function _add_ramp_eqs!(
|
||||
prod_above[gn, t] +
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
(RESERVES_WHEN_SHUT_DOWN ? reserve[gn, t] : 0.0) <=
|
||||
Pbar * is_on[gn, t] -
|
||||
sum((Pbar - (SD + i * RD)) * switch_off[gn, t+1+i] for i = 0:KSD) -
|
||||
sum((Pbar - (SU + i * RU)) * switch_on[gn, t-i] for i = 0:KSU) - (
|
||||
Pbar * is_on[gn, t] - sum(
|
||||
(Pbar - (SD + i * RD)) * switch_off[gn, t+1+i] for
|
||||
i in 0:KSD
|
||||
) - sum(
|
||||
(Pbar - (SU + i * RU)) * switch_on[gn, t-i] for
|
||||
i in 0:KSU
|
||||
) - (
|
||||
(KSU >= TRU || KSU > t - 2) ? 0.0 :
|
||||
max(0, (SU + (KSU + 1) * RU) - (SD + TRD * RD)) *
|
||||
switch_on[gn, t-(KSU+1)]
|
||||
|
||||
@@ -8,7 +8,7 @@ function _add_flexiramp_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
mfg = _init(model, :mfg)
|
||||
dwflexiramp = _init(model, :dwflexiramp)
|
||||
dwflexiramp_shortfall = _init(model, :dwflexiramp_shortfall)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# maximum feasible generation, \bar{g_{its}} in Wang & Hobbs (2016)
|
||||
mfg[g.name, t] = @variable(model, lower_bound = 0)
|
||||
if g.provides_flexiramp_reserves[t]
|
||||
@@ -51,28 +51,37 @@ function _add_ramp_eqs!(
|
||||
dwflexiramp = model[:dwflexiramp]
|
||||
mfg = model[:mfg]
|
||||
|
||||
for t = 1:model[:instance].time
|
||||
@constraint(model, prod_above[gn, t] + (is_on[gn, t] * minp[t]) <= mfg[gn, t]) # Eq. (19) in Wang & Hobbs (2016)
|
||||
for t in 1:model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] + (is_on[gn, t] * minp[t]) <= mfg[gn, t]
|
||||
) # Eq. (19) in Wang & Hobbs (2016)
|
||||
@constraint(model, mfg[gn, t] <= is_on[gn, t] * maxp[t]) # Eq. (22) in Wang & Hobbs (2016)
|
||||
if t != model[:instance].time
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] - dwflexiramp[gn, t] + (is_on[gn, t] * minp[t])
|
||||
prod_above[gn, t] - dwflexiramp[gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] - dwflexiramp[gn, t] + (is_on[gn, t] * minp[t]) <=
|
||||
prod_above[gn, t] - dwflexiramp[gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (20) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
minp[t] * (is_on[gn, t+1] + is_on[gn, t] - 1) <=
|
||||
prod_above[gn, t] + upflexiramp[gn, t] + (is_on[gn, t] * minp[t])
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[gn, t] +
|
||||
(is_on[gn, t] * minp[t])
|
||||
) # first inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
prod_above[gn, t] + upflexiramp[gn, t] + (is_on[gn, t] * minp[t]) <=
|
||||
prod_above[gn, t] +
|
||||
upflexiramp[gn, t] +
|
||||
(is_on[gn, t] * minp[t]) <=
|
||||
mfg[gn, t+1] + (maxp[t] * (1 - is_on[gn, t+1]))
|
||||
) # second inequality of Eq. (21) in Wang & Hobbs (2016)
|
||||
if t != 1
|
||||
@@ -104,7 +113,8 @@ function _add_ramp_eqs!(
|
||||
) # Eq. (23) in Wang & Hobbs (2016) for the first time period
|
||||
@constraint(
|
||||
model,
|
||||
initial_power - (prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
initial_power -
|
||||
(prod_above[gn, t] + (is_on[gn, t] * minp[t])) <=
|
||||
RD * is_on[gn, t] +
|
||||
SD * (is_initially_on - is_on[gn, t]) +
|
||||
maxp[t] * (1 - is_initially_on)
|
||||
@@ -113,7 +123,8 @@ function _add_ramp_eqs!(
|
||||
@constraint(
|
||||
model,
|
||||
mfg[gn, t] <=
|
||||
(SD * (is_on[gn, t] - is_on[gn, t+1])) + (maxp[t] * is_on[gn, t+1])
|
||||
(SD * (is_on[gn, t] - is_on[gn, t+1])) +
|
||||
(maxp[t] * is_on[gn, t+1])
|
||||
) # Eq. (24) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
@@ -141,13 +152,15 @@ function _add_ramp_eqs!(
|
||||
) # second inequality of Eq. (27) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <= upflexiramp[gn, t]
|
||||
-maxp[t] * is_on[gn, t] + minp[t] * is_on[gn, t+1] <=
|
||||
upflexiramp[gn, t]
|
||||
) # first inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(model, upflexiramp[gn, t] <= maxp[t] * is_on[gn, t+1]) # second inequality of Eq. (28) in Wang & Hobbs (2016)
|
||||
@constraint(model, -maxp[t] * is_on[gn, t+1] <= dwflexiramp[gn, t]) # first inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
@constraint(
|
||||
model,
|
||||
dwflexiramp[gn, t] <= (maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
|
||||
dwflexiramp[gn, t] <=
|
||||
(maxp[t] * is_on[gn, t]) - (minp[t] * is_on[gn, t+1])
|
||||
) # second inequality of Eq. (29) in Wang & Hobbs (2016)
|
||||
else
|
||||
@constraint(
|
||||
|
||||
@@ -5,12 +5,13 @@
|
||||
function _add_bus!(model::JuMP.Model, b::Bus)::Nothing
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
curtail = _init(model, :curtail)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# Fixed load
|
||||
net_injection[b.name, t] = AffExpr(-b.load[t])
|
||||
|
||||
# Load curtailment
|
||||
curtail[b.name, t] = @variable(model, lower_bound = 0, upper_bound = b.load[t])
|
||||
curtail[b.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = b.load[t])
|
||||
|
||||
add_to_expression!(net_injection[b.name, t], curtail[b.name, t], 1.0)
|
||||
add_to_expression!(
|
||||
|
||||
@@ -8,9 +8,13 @@ function _add_transmission_line!(
|
||||
f::ShiftFactorsFormulation,
|
||||
)::Nothing
|
||||
overflow = _init(model, :overflow)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
overflow[lm.name, t] = @variable(model, lower_bound = 0)
|
||||
add_to_expression!(model[:obj], overflow[lm.name, t], lm.flow_limit_penalty[t])
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
overflow[lm.name, t],
|
||||
lm.flow_limit_penalty[t],
|
||||
)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -2,18 +2,26 @@
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_price_sensitive_load!(model::JuMP.Model, ps::PriceSensitiveLoad)::Nothing
|
||||
function _add_price_sensitive_load!(
|
||||
model::JuMP.Model,
|
||||
ps::PriceSensitiveLoad,
|
||||
)::Nothing
|
||||
loads = _init(model, :loads)
|
||||
net_injection = _init(model, :expr_net_injection)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# Decision variable
|
||||
loads[ps.name, t] = @variable(model, lower_bound = 0, upper_bound = ps.demand[t])
|
||||
loads[ps.name, t] =
|
||||
@variable(model, lower_bound = 0, upper_bound = ps.demand[t])
|
||||
|
||||
# Objective function terms
|
||||
add_to_expression!(model[:obj], loads[ps.name, t], -ps.revenue[t])
|
||||
|
||||
# Net injection
|
||||
add_to_expression!(net_injection[ps.bus.name, t], loads[ps.name, t], -1.0)
|
||||
add_to_expression!(
|
||||
net_injection[ps.bus.name, t],
|
||||
loads[ps.name, t],
|
||||
-1.0,
|
||||
)
|
||||
end
|
||||
return
|
||||
end
|
||||
|
||||
@@ -13,7 +13,10 @@ M[l.offset, b.offset] indicates the amount of power (in MW) that flows through
|
||||
transmission line l when 1 MW of power is injected at the slack bus (the bus
|
||||
that has offset zero) and withdrawn from b.
|
||||
"""
|
||||
function _injection_shift_factors(; buses::Array{Bus}, lines::Array{TransmissionLine})
|
||||
function _injection_shift_factors(;
|
||||
buses::Array{Bus},
|
||||
lines::Array{TransmissionLine},
|
||||
)
|
||||
susceptance = _susceptance_matrix(lines)
|
||||
incidence = _reduced_incidence_matrix(lines = lines, buses = buses)
|
||||
laplacian = transpose(incidence) * susceptance * incidence
|
||||
@@ -30,7 +33,10 @@ is the number of buses and L is the number of lines. For each row, there is a 1
|
||||
element and a -1 element, indicating the source and target buses, respectively,
|
||||
for that line.
|
||||
"""
|
||||
function _reduced_incidence_matrix(; buses::Array{Bus}, lines::Array{TransmissionLine})
|
||||
function _reduced_incidence_matrix(;
|
||||
buses::Array{Bus},
|
||||
lines::Array{TransmissionLine},
|
||||
)
|
||||
matrix = spzeros(Float64, length(lines), length(buses) - 1)
|
||||
for line in lines
|
||||
if line.source.offset > 0
|
||||
@@ -69,7 +75,7 @@ function _line_outage_factors(;
|
||||
incidence = Array(_reduced_incidence_matrix(lines = lines, buses = buses))
|
||||
lodf::Array{Float64,2} = isf * transpose(incidence)
|
||||
_, n = size(lodf)
|
||||
for i = 1:n
|
||||
for i in 1:n
|
||||
lodf[:, i] *= 1.0 / (1.0 - lodf[i, i])
|
||||
lodf[i, i] = -1
|
||||
end
|
||||
|
||||
@@ -25,7 +25,14 @@ struct Formulation
|
||||
status_vars::StatusVarsFormulation = Gar1962.StatusVars(),
|
||||
transmission::TransmissionFormulation = ShiftFactorsFormulation(),
|
||||
)
|
||||
return new(prod_vars, pwl_costs, ramping, startup_costs, status_vars, transmission)
|
||||
return new(
|
||||
prod_vars,
|
||||
pwl_costs,
|
||||
ramping,
|
||||
startup_costs,
|
||||
status_vars,
|
||||
transmission,
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@@ -14,12 +14,12 @@ function _add_net_injection_eqs!(model::JuMP.Model)::Nothing
|
||||
net_injection = _init(model, :net_injection)
|
||||
eq_net_injection = _init(model, :eq_net_injection)
|
||||
eq_power_balance = _init(model, :eq_power_balance)
|
||||
for t = 1:T, b in model[:instance].buses
|
||||
for t in 1:T, b in model[:instance].buses
|
||||
n = net_injection[b.name, t] = @variable(model)
|
||||
eq_net_injection[b.name, t] =
|
||||
@constraint(model, -n + model[:expr_net_injection][b.name, t] == 0)
|
||||
end
|
||||
for t = 1:T
|
||||
for t in 1:T
|
||||
eq_power_balance[t] = @constraint(
|
||||
model,
|
||||
sum(net_injection[b.name, t] for b in model[:instance].buses) == 0
|
||||
@@ -31,7 +31,7 @@ end
|
||||
function _add_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
eq_min_reserve = _init(model, :eq_min_reserve)
|
||||
instance = model[:instance]
|
||||
for t = 1:instance.time
|
||||
for t in 1:instance.time
|
||||
# Equation (68) in Kneuven et al. (2020)
|
||||
# As in Morales-España et al. (2013a)
|
||||
# Akin to the alternative formulation with max_power_avail
|
||||
@@ -46,7 +46,11 @@ function _add_reserve_eqs!(model::JuMP.Model)::Nothing
|
||||
|
||||
# Account for shortfall contribution to objective
|
||||
if shortfall_penalty >= 0
|
||||
add_to_expression!(model[:obj], shortfall_penalty, model[:reserve_shortfall][t])
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
shortfall_penalty,
|
||||
model[:reserve_shortfall][t],
|
||||
)
|
||||
end
|
||||
end
|
||||
return
|
||||
@@ -61,20 +65,24 @@ function _add_flexiramp_eqs!(model::JuMP.Model)::Nothing
|
||||
eq_min_upflexiramp = _init(model, :eq_min_upflexiramp)
|
||||
eq_min_dwflexiramp = _init(model, :eq_min_dwflexiramp)
|
||||
instance = model[:instance]
|
||||
for t = 1:instance.time
|
||||
for t in 1:instance.time
|
||||
flexiramp_shortfall_penalty = instance.flexiramp_shortfall_penalty[t]
|
||||
# Eq. (17) in Wang & Hobbs (2016)
|
||||
eq_min_upflexiramp[t] = @constraint(
|
||||
model,
|
||||
sum(model[:upflexiramp][g.name, t] for g in instance.units) + (
|
||||
flexiramp_shortfall_penalty >= 0 ? model[:upflexiramp_shortfall][t] : 0.0
|
||||
sum(model[:upflexiramp][g.name, t] for g in instance.units) +
|
||||
(
|
||||
flexiramp_shortfall_penalty >= 0 ?
|
||||
model[:upflexiramp_shortfall][t] : 0.0
|
||||
) >= instance.reserves.upflexiramp[t]
|
||||
)
|
||||
# Eq. (18) in Wang & Hobbs (2016)
|
||||
eq_min_dwflexiramp[t] = @constraint(
|
||||
model,
|
||||
sum(model[:dwflexiramp][g.name, t] for g in instance.units) + (
|
||||
flexiramp_shortfall_penalty >= 0 ? model[:dwflexiramp_shortfall][t] : 0.0
|
||||
sum(model[:dwflexiramp][g.name, t] for g in instance.units) +
|
||||
(
|
||||
flexiramp_shortfall_penalty >= 0 ?
|
||||
model[:dwflexiramp_shortfall][t] : 0.0
|
||||
) >= instance.reserves.dwflexiramp[t]
|
||||
)
|
||||
|
||||
@@ -83,7 +91,10 @@ function _add_flexiramp_eqs!(model::JuMP.Model)::Nothing
|
||||
add_to_expression!(
|
||||
model[:obj],
|
||||
flexiramp_shortfall_penalty,
|
||||
(model[:upflexiramp_shortfall][t] + model[:dwflexiramp_shortfall][t]),
|
||||
(
|
||||
model[:upflexiramp_shortfall][t] +
|
||||
model[:dwflexiramp_shortfall][t]
|
||||
),
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
@@ -46,7 +46,7 @@ _is_initially_on(g::Unit)::Float64 = (g.initial_status > 0 ? 1.0 : 0.0)
|
||||
function _add_reserve_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
reserve = _init(model, :reserve)
|
||||
reserve_shortfall = _init(model, :reserve_shortfall)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
if g.provides_spinning_reserves[t]
|
||||
reserve[g.name, t] = @variable(model, lower_bound = 0)
|
||||
else
|
||||
@@ -61,7 +61,7 @@ end
|
||||
|
||||
function _add_reserve_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
reserve = model[:reserve]
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
add_to_expression!(expr_reserve[g.bus.name, t], reserve[g.name, t], 1.0)
|
||||
end
|
||||
return
|
||||
@@ -69,8 +69,8 @@ end
|
||||
|
||||
function _add_startup_shutdown_vars!(model::JuMP.Model, g::Unit)::Nothing
|
||||
startup = _init(model, :startup)
|
||||
for t = 1:model[:instance].time
|
||||
for s = 1:length(g.startup_categories)
|
||||
for t in 1:model[:instance].time
|
||||
for s in 1:length(g.startup_categories)
|
||||
startup[g.name, t, s] = @variable(model, binary = true)
|
||||
end
|
||||
end
|
||||
@@ -86,7 +86,7 @@ function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
T = model[:instance].time
|
||||
for t = 1:T
|
||||
for t in 1:T
|
||||
# Startup limit
|
||||
eq_startup_limit[g.name, t] = @constraint(
|
||||
model,
|
||||
@@ -96,14 +96,16 @@ function _add_startup_shutdown_limit_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
)
|
||||
# Shutdown limit
|
||||
if g.initial_power > g.shutdown_limit
|
||||
eq_shutdown_limit[g.name, 0] = @constraint(model, switch_off[g.name, 1] <= 0)
|
||||
eq_shutdown_limit[g.name, 0] =
|
||||
@constraint(model, switch_off[g.name, 1] <= 0)
|
||||
end
|
||||
if t < T
|
||||
eq_shutdown_limit[g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] <=
|
||||
(g.max_power[t] - g.min_power[t]) * is_on[g.name, t] -
|
||||
max(0, g.max_power[t] - g.shutdown_limit) * switch_off[g.name, t+1]
|
||||
max(0, g.max_power[t] - g.shutdown_limit) *
|
||||
switch_off[g.name, t+1]
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -119,7 +121,7 @@ function _add_ramp_eqs!(
|
||||
reserve = model[:reserve]
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if _is_initially_on(g) == 1
|
||||
@@ -149,7 +151,8 @@ function _add_ramp_eqs!(
|
||||
else
|
||||
eq_ramp_down[g.name, t] = @constraint(
|
||||
model,
|
||||
prod_above[g.name, t] >= prod_above[g.name, t-1] - g.ramp_down_limit
|
||||
prod_above[g.name, t] >=
|
||||
prod_above[g.name, t-1] - g.ramp_down_limit
|
||||
)
|
||||
end
|
||||
end
|
||||
@@ -162,18 +165,18 @@ function _add_min_uptime_downtime_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
eq_min_uptime = _init(model, :eq_min_uptime)
|
||||
eq_min_downtime = _init(model, :eq_min_downtime)
|
||||
T = model[:instance].time
|
||||
for t = 1:T
|
||||
for t in 1:T
|
||||
# Minimum up-time
|
||||
eq_min_uptime[g.name, t] = @constraint(
|
||||
model,
|
||||
sum(switch_on[g.name, i] for i in (t-g.min_uptime+1):t if i >= 1) <=
|
||||
is_on[g.name, t]
|
||||
sum(switch_on[g.name, i] for i in (t-g.min_uptime+1):t if i >= 1) <= is_on[g.name, t]
|
||||
)
|
||||
# Minimum down-time
|
||||
eq_min_downtime[g.name, t] = @constraint(
|
||||
model,
|
||||
sum(switch_off[g.name, i] for i in (t-g.min_downtime+1):t if i >= 1) <=
|
||||
1 - is_on[g.name, t]
|
||||
sum(
|
||||
switch_off[g.name, i] for i in (t-g.min_downtime+1):t if i >= 1
|
||||
) <= 1 - is_on[g.name, t]
|
||||
)
|
||||
# Minimum up/down-time for initial periods
|
||||
if t == 1
|
||||
@@ -200,7 +203,7 @@ end
|
||||
|
||||
function _add_net_injection_eqs!(model::JuMP.Model, g::Unit)::Nothing
|
||||
expr_net_injection = model[:expr_net_injection]
|
||||
for t = 1:model[:instance].time
|
||||
for t in 1:model[:instance].time
|
||||
# Add to net injection expression
|
||||
add_to_expression!(
|
||||
expr_net_injection[g.bus.name, t],
|
||||
|
||||
Reference in New Issue
Block a user