mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-06 00:08:52 -06:00
Flatten dir structure, update docstrings
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
[deps]
|
||||
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
|
||||
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
|
||||
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
|
||||
UnitCommitment = "64606440-39ea-11e9-0f29-3303a1d3d877"
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
using Documenter, UnitCommitment
|
||||
using Documenter, UnitCommitment, JuMP
|
||||
|
||||
makedocs(
|
||||
sitename="UnitCommitment.jl",
|
||||
|
||||
@@ -12,6 +12,20 @@ UnitCommitment.validate
|
||||
UnitCommitment.write
|
||||
```
|
||||
|
||||
## Locational Marginal Prices
|
||||
|
||||
### Conventional LMPs
|
||||
```@docs
|
||||
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.ConventionalLMP)
|
||||
```
|
||||
|
||||
### Approximated Extended LMPs
|
||||
```@docs
|
||||
UnitCommitment.AELMP
|
||||
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.AELMP)
|
||||
```
|
||||
|
||||
|
||||
## Modify instance
|
||||
|
||||
```@docs
|
||||
|
||||
@@ -18,8 +18,6 @@ include("model/formulations/MorLatRam2013/structs.jl")
|
||||
include("model/formulations/PanGua2016/structs.jl")
|
||||
include("solution/methods/XavQiuWanThi2019/structs.jl")
|
||||
include("model/formulations/WanHob2016/structs.jl")
|
||||
include("lmp/lmp/structs.jl")
|
||||
include("lmp/aelmp/structs.jl")
|
||||
|
||||
include("import/egret.jl")
|
||||
include("instance/read.jl")
|
||||
@@ -59,7 +57,7 @@ include("utils/log.jl")
|
||||
include("utils/benchmark.jl")
|
||||
include("validation/repair.jl")
|
||||
include("validation/validate.jl")
|
||||
include("lmp/lmp/compute.jl")
|
||||
include("lmp/aelmp/compute.jl")
|
||||
include("lmp/conventional.jl")
|
||||
include("lmp/aelmp.jl")
|
||||
|
||||
end
|
||||
|
||||
@@ -3,21 +3,26 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using JuMP
|
||||
|
||||
"""
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::AELMP.Method;
|
||||
method::AELMP;
|
||||
optimizer = nothing,
|
||||
)
|
||||
|
||||
Calculates the approximate extended locational marginal prices of the given unit commitment instance.
|
||||
The AELPM does the following three things:
|
||||
1. It removes the minimum generation requirement for each generator
|
||||
2. It averages the start-up cost over the offer blocks for each generator
|
||||
3. It relaxes all the binary constraints and integrality
|
||||
Returns a dictionary of AELMPs. Each key is usually a tuple of "Bus name" and time index.
|
||||
|
||||
NOTE: this approximation method is not fully developed. The implementation is based on MISO Phase I only.
|
||||
The AELPM does the following three things:
|
||||
|
||||
1. It sets the minimum power output of each generator to zero
|
||||
2. It averages the start-up cost over the offer blocks for each generator
|
||||
3. It relaxes all integrality constraints
|
||||
|
||||
Returns a dictionary mapping `(bus_name, time)` to the marginal price.
|
||||
|
||||
WARNING: This approximation method is not fully developed. The implementation is based on MISO Phase I only.
|
||||
|
||||
1. It only supports Fast Start resources. More specifically, the minimum up/down time has to be zero.
|
||||
2. The method does NOT support time series of start-up costs.
|
||||
3. The method can only calculate for the first time slot if allow_offline_participation=false.
|
||||
@@ -29,7 +34,7 @@ Arguments
|
||||
the UnitCommitment model, must be solved before calling this function if offline participation is not allowed.
|
||||
|
||||
- `method`:
|
||||
the AELMP method, must be specified.
|
||||
the AELMP method.
|
||||
|
||||
- `optimizer`:
|
||||
the optimizer for solving the LP problem.
|
||||
@@ -38,60 +43,77 @@ Examples
|
||||
--------
|
||||
|
||||
```julia
|
||||
|
||||
using UnitCommitment
|
||||
using Cbc
|
||||
using HiGHS
|
||||
|
||||
import UnitCommitment:
|
||||
AELMP
|
||||
import UnitCommitment: AELMP
|
||||
|
||||
# Read benchmark instance
|
||||
instance = UnitCommitment.read("instance.json")
|
||||
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
|
||||
|
||||
# Construct model (using state-of-the-art defaults)
|
||||
# Build the model
|
||||
model = UnitCommitment.build_model(
|
||||
instance = instance,
|
||||
optimizer = Cbc.Optimizer,
|
||||
variable_names = true,
|
||||
optimizer = HiGHS.Optimizer,
|
||||
)
|
||||
|
||||
# Get the AELMP with the default policy:
|
||||
# 1. Offline generators are allowed to participate in pricing
|
||||
# 2. Start-up costs are considered.
|
||||
# DO NOT use Cbc as the optimizer here. Cbc does not support dual values.
|
||||
my_aelmp_default = UnitCommitment.compute_lmp(
|
||||
model, # pre-solving is optional if allowing offline participation
|
||||
AELMP.Method(),
|
||||
optimizer = HiGHS.Optimizer
|
||||
)
|
||||
|
||||
# Get the AELMPs with an alternative policy
|
||||
# 1. Offline generators are NOT allowed to participate in pricing
|
||||
# 2. Start-up costs are considered.
|
||||
# UC model must be solved first if offline generators are NOT allowed
|
||||
# Optimize the model
|
||||
UnitCommitment.optimize!(model)
|
||||
|
||||
# then call the AELMP method
|
||||
my_aelmp_alt = UnitCommitment.compute_lmp(
|
||||
model, # pre-solving is required here
|
||||
AELMP.Method(
|
||||
# Compute the AELMPs
|
||||
aelmp = UnitCommitment.compute_lmp(
|
||||
model,
|
||||
AELMP(
|
||||
allow_offline_participation = false,
|
||||
consider_startup_costs = true
|
||||
),
|
||||
optimizer = HiGHS.Optimizer
|
||||
)
|
||||
|
||||
# Accessing the 'my_aelmp_alt' dictionary
|
||||
# Access the AELMPs
|
||||
# Example: "b1" is the bus name, 1 is the first time slot
|
||||
@show my_aelmp_alt["b1", 1]
|
||||
|
||||
@show aelmp["b1", 1]
|
||||
```
|
||||
|
||||
"""
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::AELMP;
|
||||
optimizer,
|
||||
)::OrderedDict{Tuple{String,Int},Float64}
|
||||
@info "Calculating the AELMP..."
|
||||
@info "Building the approximation model..."
|
||||
instance = deepcopy(model[:instance])
|
||||
_preset_aelmp_parameters!(method, model)
|
||||
_modify_instance!(instance, model, method)
|
||||
|
||||
# prepare the result dictionary and solve the model
|
||||
elmp = OrderedDict()
|
||||
@info "Solving the approximation model."
|
||||
approx_model = build_model(instance=instance, variable_names=true)
|
||||
|
||||
# relax the binary constraint, and relax integrality
|
||||
for v in all_variables(approx_model)
|
||||
if is_binary(v)
|
||||
unset_binary(v)
|
||||
end
|
||||
end
|
||||
relax_integrality(approx_model)
|
||||
set_optimizer(approx_model, optimizer)
|
||||
|
||||
# solve the model
|
||||
set_silent(approx_model)
|
||||
optimize!(approx_model)
|
||||
|
||||
# access the dual values
|
||||
@info "Getting dual values (AELMPs)."
|
||||
for (key, val) in approx_model[:eq_net_injection]
|
||||
elmp[key] = dual(val)
|
||||
end
|
||||
return elmp
|
||||
end
|
||||
|
||||
function _preset_aelmp_parameters!(
|
||||
method::AELMP.Method,
|
||||
method::AELMP,
|
||||
model::JuMP.Model
|
||||
)
|
||||
# this function corrects the allow_offline_participation parameter to match the model status
|
||||
@@ -125,7 +147,7 @@ end
|
||||
function _modify_instance!(
|
||||
instance::UnitCommitmentInstance,
|
||||
model::JuMP.Model,
|
||||
method::AELMP.Method
|
||||
method::AELMP
|
||||
)
|
||||
# this function modifies the instance units (generators)
|
||||
# 1. remove (if NOT allowing) the offline generators
|
||||
@@ -183,49 +205,3 @@ function _modify_instance!(
|
||||
end
|
||||
instance.units_by_name = Dict(g.name => g for g in instance.units)
|
||||
end
|
||||
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::AELMP.Method;
|
||||
optimizer = nothing
|
||||
)
|
||||
# Error if a linear optimizer is not specified
|
||||
if isnothing(optimizer)
|
||||
@error "Please supply a linear optimizer."
|
||||
return nothing
|
||||
end
|
||||
|
||||
@info "Calculating the AELMP..."
|
||||
@info "Building the approximation model..."
|
||||
# get the instance and make a deep copy
|
||||
instance = deepcopy(model[:instance])
|
||||
# preset the method to match the model status (solved, unsolved, not supplied)
|
||||
_preset_aelmp_parameters!(method, model)
|
||||
# modify the instance (generator)
|
||||
_modify_instance!(instance, model, method)
|
||||
|
||||
# prepare the result dictionary and solve the model
|
||||
elmp = OrderedDict()
|
||||
@info "Solving the approximation model."
|
||||
approx_model = build_model(instance=instance, variable_names=true)
|
||||
|
||||
# relax the binary constraint, and relax integrality
|
||||
for v in all_variables(approx_model)
|
||||
if is_binary(v)
|
||||
unset_binary(v)
|
||||
end
|
||||
end
|
||||
relax_integrality(approx_model)
|
||||
set_optimizer(approx_model, optimizer)
|
||||
|
||||
# solve the model
|
||||
# set_silent(approx_model)
|
||||
optimize!(approx_model)
|
||||
|
||||
# access the dual values
|
||||
@info "Getting dual values (AELMPs)."
|
||||
for (key, val) in approx_model[:eq_net_injection]
|
||||
elmp[key] = dual(val)
|
||||
end
|
||||
return elmp
|
||||
end
|
||||
@@ -1,41 +0,0 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
module AELMP
|
||||
|
||||
import ..PricingMethod
|
||||
|
||||
"""
|
||||
mutable struct Method
|
||||
allow_offline_participation::Bool,
|
||||
consider_startup_costs::Bool
|
||||
end
|
||||
|
||||
------
|
||||
|
||||
- `allow_offline_participation`:
|
||||
defaults to true.
|
||||
If true, offline assets are allowed to participate in pricing.
|
||||
- `consider_startup_costs`:
|
||||
defaults to true.
|
||||
If true, the start-up costs are averaged over each unit production; otherwise the production costs stay the same.
|
||||
|
||||
"""
|
||||
|
||||
mutable struct Method <: PricingMethod
|
||||
allow_offline_participation::Bool
|
||||
consider_startup_costs::Bool
|
||||
|
||||
function Method(;
|
||||
allow_offline_participation::Bool = true,
|
||||
consider_startup_costs::Bool = true
|
||||
)
|
||||
return new(
|
||||
allow_offline_participation,
|
||||
consider_startup_costs
|
||||
)
|
||||
end
|
||||
end
|
||||
|
||||
end
|
||||
@@ -7,13 +7,12 @@ using JuMP
|
||||
"""
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::LMP.Method;
|
||||
optimizer = nothing
|
||||
)
|
||||
method::ConventionalLMP;
|
||||
optimizer,
|
||||
)::OrderedDict{Tuple{String,Int},Float64}
|
||||
|
||||
Calculates the locational marginal prices of the given unit commitment instance.
|
||||
Returns a dictionary of LMPs. Each key is usually a tuple of "Bus name" and time index.
|
||||
Returns nothing if there is an error in solving the LMPs.
|
||||
Calculates conventional locational marginal prices of the given unit commitment
|
||||
instance. Returns a dictionary mapping `(bus_name, time)` to the marginal price.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
@@ -22,7 +21,7 @@ Arguments
|
||||
the UnitCommitment model, must be solved before calling this function.
|
||||
|
||||
- `method`:
|
||||
the LMP method, must be specified.
|
||||
the LMP method.
|
||||
|
||||
- `optimizer`:
|
||||
the optimizer for solving the LP problem.
|
||||
@@ -31,57 +30,40 @@ Examples
|
||||
--------
|
||||
|
||||
```julia
|
||||
|
||||
using UnitCommitment
|
||||
using Cbc
|
||||
using HiGHS
|
||||
|
||||
import UnitCommitment:
|
||||
LMP
|
||||
import UnitCommitment: ConventionalLMP
|
||||
|
||||
# Read benchmark instance
|
||||
instance = UnitCommitment.read("instance.json")
|
||||
instance = UnitCommitment.read_benchmark("matpower/case118/2018-01-01")
|
||||
|
||||
# Construct model (using state-of-the-art defaults)
|
||||
# Build the model
|
||||
model = UnitCommitment.build_model(
|
||||
instance = instance,
|
||||
optimizer = Cbc.Optimizer,
|
||||
)
|
||||
|
||||
# Get the LMPs before solving the UC model
|
||||
# Error messages will be displayed and the returned value is nothing.
|
||||
# lmp = UnitCommitment.compute_lmp(model, LMP.Method(), optimizer = HiGHS.Optimizer) # DO NOT RUN
|
||||
|
||||
UnitCommitment.optimize!(model)
|
||||
|
||||
# Get the LMPs after solving the UC model (the correct way)
|
||||
# DO NOT use Cbc as the optimizer here. Cbc does not support dual values.
|
||||
# Compute regular LMP
|
||||
my_lmp = UnitCommitment.compute_lmp(
|
||||
model,
|
||||
LMP.Method(),
|
||||
optimizer = HiGHS.Optimizer,
|
||||
)
|
||||
|
||||
# Accessing the 'my_lmp' dictionary
|
||||
# Optimize the model
|
||||
UnitCommitment.optimize!(model)
|
||||
|
||||
# Compute the LMPs using the conventional method
|
||||
lmp = UnitCommitment.compute_lmp(
|
||||
model,
|
||||
ConventionalLMP(),
|
||||
optimizer = HiGHS.Optimizer,
|
||||
)
|
||||
|
||||
# Access the LMPs
|
||||
# Example: "b1" is the bus name, 1 is the first time slot
|
||||
@show my_lmp["b1", 1]
|
||||
|
||||
@show lmp["b1", 1]
|
||||
```
|
||||
|
||||
"""
|
||||
|
||||
function compute_lmp(
|
||||
model::JuMP.Model,
|
||||
method::LMP.Method;
|
||||
optimizer = nothing
|
||||
)
|
||||
# Error if a linear optimizer is not specified
|
||||
if isnothing(optimizer)
|
||||
@error "Please supply a linear optimizer."
|
||||
return nothing
|
||||
end
|
||||
|
||||
::ConventionalLMP;
|
||||
optimizer,
|
||||
)::OrderedDict{Tuple{String,Int},Float64}
|
||||
# Validate model, the UC model must be solved beforehand
|
||||
if !has_values(model)
|
||||
@error "The UC model must be solved before calculating the LMPs."
|
||||
@@ -1,18 +0,0 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
"""
|
||||
Formulation described in:
|
||||
|
||||
Arroyo, J. M., & Conejo, A. J. (2000). Optimal response of a thermal unit
|
||||
to an electricity spot market. IEEE Transactions on power systems, 15(3),
|
||||
1098-1104. DOI: https://doi.org/10.1109/59.871739
|
||||
"""
|
||||
module LMP
|
||||
|
||||
import ..PricingMethod
|
||||
|
||||
struct Method <: PricingMethod end
|
||||
|
||||
end
|
||||
@@ -3,3 +3,26 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
abstract type PricingMethod end
|
||||
|
||||
struct ConventionalLMP <: PricingMethod end
|
||||
|
||||
"""
|
||||
struct AELMP <: PricingMethod
|
||||
allow_offline_participation::Bool = true
|
||||
consider_startup_costs::Bool = true
|
||||
end
|
||||
|
||||
Approximate Extended LMPs.
|
||||
|
||||
Arguments
|
||||
---------
|
||||
|
||||
- `allow_offline_participation`:
|
||||
If true, offline assets are allowed to participate in pricing.
|
||||
- `consider_startup_costs`:
|
||||
If true, the start-up costs are averaged over each unit production; otherwise the production costs stay the same.
|
||||
"""
|
||||
Base.@kwdef struct AELMP <: PricingMethod
|
||||
allow_offline_participation::Bool = true
|
||||
consider_startup_costs::Bool = true
|
||||
end
|
||||
@@ -21,7 +21,7 @@ import UnitCommitment:
|
||||
# policy 1: allow offlines; consider startups
|
||||
aelmp_1 = UnitCommitment.compute_lmp(
|
||||
model,
|
||||
AELMP.Method(),
|
||||
AELMP(),
|
||||
optimizer=HiGHS.Optimizer
|
||||
)
|
||||
@test aelmp_1["B1", 1] ≈ 231.7 atol = 0.1
|
||||
@@ -29,7 +29,7 @@ import UnitCommitment:
|
||||
# policy 2: do not allow offlines; but consider startups
|
||||
aelmp_2 = UnitCommitment.compute_lmp(
|
||||
model,
|
||||
AELMP.Method(
|
||||
AELMP(
|
||||
allow_offline_participation=false,
|
||||
consider_startup_costs=true
|
||||
),
|
||||
|
||||
@@ -3,8 +3,7 @@
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
using UnitCommitment, Cbc, HiGHS, JuMP
|
||||
import UnitCommitment:
|
||||
LMP
|
||||
import UnitCommitment: ConventionalLMP
|
||||
|
||||
function solve_lmp_testcase(path::String)
|
||||
instance = UnitCommitment.read(path)
|
||||
@@ -13,13 +12,11 @@ function solve_lmp_testcase(path::String)
|
||||
optimizer = Cbc.Optimizer,
|
||||
variable_names = true,
|
||||
)
|
||||
# set silent, solve the UC
|
||||
JuMP.set_silent(model)
|
||||
UnitCommitment.optimize!(model)
|
||||
# get the lmp
|
||||
lmp = UnitCommitment.compute_lmp(
|
||||
model,
|
||||
LMP.Method(),
|
||||
ConventionalLMP(),
|
||||
optimizer=HiGHS.Optimizer,
|
||||
)
|
||||
return lmp
|
||||
|
||||
Reference in New Issue
Block a user