Flatten dir structure, update docstrings

pull/27/head
Alinson S. Xavier 3 years ago
parent 34ca6952fb
commit d2e11eee42
Signed by: isoron
GPG Key ID: 0DA8E4B9E1109DCA

@ -1,4 +1,5 @@
[deps]
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
JuMP = "4076af6c-e467-56ae-b986-b466b2749572"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
UnitCommitment = "64606440-39ea-11e9-0f29-3303a1d3d877"

@ -1,4 +1,4 @@
using Documenter, UnitCommitment
using Documenter, UnitCommitment, JuMP
makedocs(
sitename="UnitCommitment.jl",

@ -12,6 +12,20 @@ UnitCommitment.validate
UnitCommitment.write
```
## Locational Marginal Prices
### Conventional LMPs
```@docs
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.ConventionalLMP)
```
### Approximated Extended LMPs
```@docs
UnitCommitment.AELMP
UnitCommitment.compute_lmp(::JuMP.Model,::UnitCommitment.AELMP)
```
## Modify instance
```@docs

@ -18,8 +18,6 @@ include("model/formulations/MorLatRam2013/structs.jl")
include("model/formulations/PanGua2016/structs.jl")
include("solution/methods/XavQiuWanThi2019/structs.jl")
include("model/formulations/WanHob2016/structs.jl")
include("lmp/lmp/structs.jl")
include("lmp/aelmp/structs.jl")
include("import/egret.jl")
include("instance/read.jl")
@ -59,7 +57,7 @@ include("utils/log.jl")
include("utils/benchmark.jl")
include("validation/repair.jl")
include("validation/validate.jl")
include("lmp/lmp/compute.jl")
include("lmp/aelmp/compute.jl")
include("lmp/conventional.jl")
include("lmp/aelmp.jl")
end

@ -3,21 +3,26 @@
# Released under the modified BSD license. See COPYING.md for more details.
using JuMP
"""
function compute_lmp(
model::JuMP.Model,
method::AELMP.Method;
method::AELMP;
optimizer = nothing,
)
Calculates the approximate extended locational marginal prices of the given unit commitment instance.
The AELPM does the following three things:
1. It removes the minimum generation requirement for each generator
2. It averages the start-up cost over the offer blocks for each generator
3. It relaxes all the binary constraints and integrality
Returns a dictionary of AELMPs. Each key is usually a tuple of "Bus name" and time index.
NOTE: this approximation method is not fully developed. The implementation is based on MISO Phase I only.
1. It sets the minimum power output of each generator to zero
2. It averages the start-up cost over the offer blocks for each generator
3. It relaxes all integrality constraints
Returns a dictionary mapping `(bus_name, time)` to the marginal price.
WARNING: This approximation method is not fully developed. The implementation is based on MISO Phase I only.
1. It only supports Fast Start resources. More specifically, the minimum up/down time has to be zero.
2. The method does NOT support time series of start-up costs.
3. The method can only calculate for the first time slot if allow_offline_participation=false.
@ -29,7 +34,7 @@ Arguments
the UnitCommitment model, must be solved before calling this function if offline participation is not allowed.
- `method`:
the AELMP method, must be specified.
the AELMP method.
- `optimizer`:
the optimizer for solving the LP problem.
@ -38,60 +43,77 @@ Examples
--------
```julia
using UnitCommitment
using Cbc
using HiGHS
import UnitCommitment:
AELMP
import UnitCommitment: AELMP
# Read benchmark instance
instance = UnitCommitment.read("instance.json")
instance = UnitCommitment.read_benchmark("matpower/case118/2017-02-01")
# Construct model (using state-of-the-art defaults)
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
variable_names = true,
optimizer = HiGHS.Optimizer,
)
# Get the AELMP with the default policy:
# 1. Offline generators are allowed to participate in pricing
# 2. Start-up costs are considered.
# DO NOT use Cbc as the optimizer here. Cbc does not support dual values.
my_aelmp_default = UnitCommitment.compute_lmp(
model, # pre-solving is optional if allowing offline participation
AELMP.Method(),
optimizer = HiGHS.Optimizer
)
# Get the AELMPs with an alternative policy
# 1. Offline generators are NOT allowed to participate in pricing
# 2. Start-up costs are considered.
# UC model must be solved first if offline generators are NOT allowed
# Optimize the model
UnitCommitment.optimize!(model)
# then call the AELMP method
my_aelmp_alt = UnitCommitment.compute_lmp(
model, # pre-solving is required here
AELMP.Method(
allow_offline_participation=false,
consider_startup_costs=true
# Compute the AELMPs
aelmp = UnitCommitment.compute_lmp(
model,
AELMP(
allow_offline_participation = false,
consider_startup_costs = true
),
optimizer = HiGHS.Optimizer
)
# Accessing the 'my_aelmp_alt' dictionary
# Access the AELMPs
# Example: "b1" is the bus name, 1 is the first time slot
@show my_aelmp_alt["b1", 1]
@show aelmp["b1", 1]
```
"""
function compute_lmp(
model::JuMP.Model,
method::AELMP;
optimizer,
)::OrderedDict{Tuple{String,Int},Float64}
@info "Calculating the AELMP..."
@info "Building the approximation model..."
instance = deepcopy(model[:instance])
_preset_aelmp_parameters!(method, model)
_modify_instance!(instance, model, method)
# prepare the result dictionary and solve the model
elmp = OrderedDict()
@info "Solving the approximation model."
approx_model = build_model(instance=instance, variable_names=true)
# relax the binary constraint, and relax integrality
for v in all_variables(approx_model)
if is_binary(v)
unset_binary(v)
end
end
relax_integrality(approx_model)
set_optimizer(approx_model, optimizer)
# solve the model
set_silent(approx_model)
optimize!(approx_model)
# access the dual values
@info "Getting dual values (AELMPs)."
for (key, val) in approx_model[:eq_net_injection]
elmp[key] = dual(val)
end
return elmp
end
function _preset_aelmp_parameters!(
method::AELMP.Method,
method::AELMP,
model::JuMP.Model
)
# this function corrects the allow_offline_participation parameter to match the model status
@ -125,7 +147,7 @@ end
function _modify_instance!(
instance::UnitCommitmentInstance,
model::JuMP.Model,
method::AELMP.Method
method::AELMP
)
# this function modifies the instance units (generators)
# 1. remove (if NOT allowing) the offline generators
@ -183,49 +205,3 @@ function _modify_instance!(
end
instance.units_by_name = Dict(g.name => g for g in instance.units)
end
function compute_lmp(
model::JuMP.Model,
method::AELMP.Method;
optimizer = nothing
)
# Error if a linear optimizer is not specified
if isnothing(optimizer)
@error "Please supply a linear optimizer."
return nothing
end
@info "Calculating the AELMP..."
@info "Building the approximation model..."
# get the instance and make a deep copy
instance = deepcopy(model[:instance])
# preset the method to match the model status (solved, unsolved, not supplied)
_preset_aelmp_parameters!(method, model)
# modify the instance (generator)
_modify_instance!(instance, model, method)
# prepare the result dictionary and solve the model
elmp = OrderedDict()
@info "Solving the approximation model."
approx_model = build_model(instance=instance, variable_names=true)
# relax the binary constraint, and relax integrality
for v in all_variables(approx_model)
if is_binary(v)
unset_binary(v)
end
end
relax_integrality(approx_model)
set_optimizer(approx_model, optimizer)
# solve the model
# set_silent(approx_model)
optimize!(approx_model)
# access the dual values
@info "Getting dual values (AELMPs)."
for (key, val) in approx_model[:eq_net_injection]
elmp[key] = dual(val)
end
return elmp
end

@ -1,41 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
module AELMP
import ..PricingMethod
"""
mutable struct Method
allow_offline_participation::Bool,
consider_startup_costs::Bool
end
------
- `allow_offline_participation`:
defaults to true.
If true, offline assets are allowed to participate in pricing.
- `consider_startup_costs`:
defaults to true.
If true, the start-up costs are averaged over each unit production; otherwise the production costs stay the same.
"""
mutable struct Method <: PricingMethod
allow_offline_participation::Bool
consider_startup_costs::Bool
function Method(;
allow_offline_participation::Bool = true,
consider_startup_costs::Bool = true
)
return new(
allow_offline_participation,
consider_startup_costs
)
end
end
end

@ -7,13 +7,12 @@ using JuMP
"""
function compute_lmp(
model::JuMP.Model,
method::LMP.Method;
optimizer = nothing
)
method::ConventionalLMP;
optimizer,
)::OrderedDict{Tuple{String,Int},Float64}
Calculates the locational marginal prices of the given unit commitment instance.
Returns a dictionary of LMPs. Each key is usually a tuple of "Bus name" and time index.
Returns nothing if there is an error in solving the LMPs.
Calculates conventional locational marginal prices of the given unit commitment
instance. Returns a dictionary mapping `(bus_name, time)` to the marginal price.
Arguments
---------
@ -22,7 +21,7 @@ Arguments
the UnitCommitment model, must be solved before calling this function.
- `method`:
the LMP method, must be specified.
the LMP method.
- `optimizer`:
the optimizer for solving the LP problem.
@ -31,57 +30,40 @@ Examples
--------
```julia
using UnitCommitment
using Cbc
using HiGHS
import UnitCommitment:
LMP
import UnitCommitment: ConventionalLMP
# Read benchmark instance
instance = UnitCommitment.read("instance.json")
instance = UnitCommitment.read_benchmark("matpower/case118/2018-01-01")
# Construct model (using state-of-the-art defaults)
# Build the model
model = UnitCommitment.build_model(
instance = instance,
optimizer = Cbc.Optimizer,
optimizer = HiGHS.Optimizer,
)
# Get the LMPs before solving the UC model
# Error messages will be displayed and the returned value is nothing.
# lmp = UnitCommitment.compute_lmp(model, LMP.Method(), optimizer = HiGHS.Optimizer) # DO NOT RUN
# Optimize the model
UnitCommitment.optimize!(model)
# Get the LMPs after solving the UC model (the correct way)
# DO NOT use Cbc as the optimizer here. Cbc does not support dual values.
# Compute regular LMP
my_lmp = UnitCommitment.compute_lmp(
# Compute the LMPs using the conventional method
lmp = UnitCommitment.compute_lmp(
model,
LMP.Method(),
ConventionalLMP(),
optimizer = HiGHS.Optimizer,
)
# Accessing the 'my_lmp' dictionary
# Access the LMPs
# Example: "b1" is the bus name, 1 is the first time slot
@show my_lmp["b1", 1]
@show lmp["b1", 1]
```
"""
function compute_lmp(
model::JuMP.Model,
method::LMP.Method;
optimizer = nothing
)
# Error if a linear optimizer is not specified
if isnothing(optimizer)
@error "Please supply a linear optimizer."
return nothing
end
::ConventionalLMP;
optimizer,
)::OrderedDict{Tuple{String,Int},Float64}
# Validate model, the UC model must be solved beforehand
if !has_values(model)
@error "The UC model must be solved before calculating the LMPs."

@ -1,18 +0,0 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
Formulation described in:
Arroyo, J. M., & Conejo, A. J. (2000). Optimal response of a thermal unit
to an electricity spot market. IEEE Transactions on power systems, 15(3),
1098-1104. DOI: https://doi.org/10.1109/59.871739
"""
module LMP
import ..PricingMethod
struct Method <: PricingMethod end
end

@ -3,3 +3,26 @@
# Released under the modified BSD license. See COPYING.md for more details.
abstract type PricingMethod end
struct ConventionalLMP <: PricingMethod end
"""
struct AELMP <: PricingMethod
allow_offline_participation::Bool = true
consider_startup_costs::Bool = true
end
Approximate Extended LMPs.
Arguments
---------
- `allow_offline_participation`:
If true, offline assets are allowed to participate in pricing.
- `consider_startup_costs`:
If true, the start-up costs are averaged over each unit production; otherwise the production costs stay the same.
"""
Base.@kwdef struct AELMP <: PricingMethod
allow_offline_participation::Bool = true
consider_startup_costs::Bool = true
end

@ -21,7 +21,7 @@ import UnitCommitment:
# policy 1: allow offlines; consider startups
aelmp_1 = UnitCommitment.compute_lmp(
model,
AELMP.Method(),
AELMP(),
optimizer=HiGHS.Optimizer
)
@test aelmp_1["B1", 1] 231.7 atol = 0.1
@ -29,7 +29,7 @@ import UnitCommitment:
# policy 2: do not allow offlines; but consider startups
aelmp_2 = UnitCommitment.compute_lmp(
model,
AELMP.Method(
AELMP(
allow_offline_participation=false,
consider_startup_costs=true
),

@ -3,8 +3,7 @@
# Released under the modified BSD license. See COPYING.md for more details.
using UnitCommitment, Cbc, HiGHS, JuMP
import UnitCommitment:
LMP
import UnitCommitment: ConventionalLMP
function solve_lmp_testcase(path::String)
instance = UnitCommitment.read(path)
@ -13,13 +12,11 @@ function solve_lmp_testcase(path::String)
optimizer = Cbc.Optimizer,
variable_names = true,
)
# set silent, solve the UC
JuMP.set_silent(model)
UnitCommitment.optimize!(model)
# get the lmp
lmp = UnitCommitment.compute_lmp(
model,
LMP.Method(),
ConventionalLMP(),
optimizer=HiGHS.Optimizer,
)
return lmp

Loading…
Cancel
Save