mirror of
https://github.com/ANL-CEEESA/UnitCommitment.jl.git
synced 2025-12-08 01:08:50 -06:00
Use 4-digit years
This commit is contained in:
92
src/model/formulations/ArrCon2000/ramp.jl
Normal file
92
src/model/formulations/ArrCon2000/ramp.jl
Normal file
@@ -0,0 +1,92 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
function _add_ramp_eqs!(
|
||||
model::JuMP.Model,
|
||||
g::Unit,
|
||||
formulation::ArrCon2000,
|
||||
)::Nothing
|
||||
# TODO: Move upper case constants to model[:instance]
|
||||
RESERVES_WHEN_START_UP = true
|
||||
RESERVES_WHEN_RAMP_UP = true
|
||||
RESERVES_WHEN_RAMP_DOWN = true
|
||||
RESERVES_WHEN_SHUT_DOWN = true
|
||||
gn = g.name
|
||||
RU = g.ramp_up_limit
|
||||
RD = g.ramp_down_limit
|
||||
SU = g.startup_limit
|
||||
SD = g.shutdown_limit
|
||||
is_on = model[:is_on]
|
||||
prod_above = model[:prod_above]
|
||||
reserve = model[:reserve]
|
||||
switch_off = model[:switch_off]
|
||||
switch_on = model[:switch_on]
|
||||
eq_ramp_down = _init(model, :eq_ramp_down)
|
||||
eq_ramp_up = _init(model, :eq_ramp_up)
|
||||
is_initially_on = (g.initial_status > 0)
|
||||
|
||||
for t in 1:model[:instance].time
|
||||
# Ramp up limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
# min power is _not_ multiplied by is_on because if !is_on, then ramp up is irrelevant
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
g.min_power[t] +
|
||||
prod_above[gn, t] +
|
||||
(RESERVES_WHEN_RAMP_UP ? reserve[gn, t] : 0.0) <=
|
||||
g.initial_power + RU
|
||||
)
|
||||
end
|
||||
else
|
||||
max_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] +
|
||||
prod_above[gn, t] +
|
||||
(
|
||||
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
|
||||
reserve[gn, t] : 0.0
|
||||
)
|
||||
min_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] + prod_above[gn, t-1]
|
||||
|
||||
# Equation (24) in Kneuven et al. (2020)
|
||||
eq_ramp_up[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_this_period - min_prod_last_period <=
|
||||
RU * is_on[gn, t-1] + SU * switch_on[gn, t]
|
||||
)
|
||||
end
|
||||
|
||||
# Ramp down limit
|
||||
if t == 1
|
||||
if is_initially_on
|
||||
# TODO If RD < SD, or more specifically if
|
||||
# min_power + RD < initial_power < SD
|
||||
# then the generator should be able to shut down at time t = 1,
|
||||
# but the constraint below will force the unit to produce power
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
g.initial_power - (g.min_power[t] + prod_above[gn, t]) <= RD
|
||||
)
|
||||
end
|
||||
else
|
||||
max_prod_last_period =
|
||||
g.min_power[t-1] * is_on[gn, t-1] +
|
||||
prod_above[gn, t-1] +
|
||||
(
|
||||
RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN ?
|
||||
reserve[gn, t-1] : 0.0
|
||||
)
|
||||
min_prod_this_period =
|
||||
g.min_power[t] * is_on[gn, t] + prod_above[gn, t]
|
||||
|
||||
# Equation (25) in Kneuven et al. (2020)
|
||||
eq_ramp_down[gn, t] = @constraint(
|
||||
model,
|
||||
max_prod_last_period - min_prod_this_period <=
|
||||
RD * is_on[gn, t] + SD * switch_off[gn, t]
|
||||
)
|
||||
end
|
||||
end
|
||||
end
|
||||
12
src/model/formulations/ArrCon2000/structs.jl
Normal file
12
src/model/formulations/ArrCon2000/structs.jl
Normal file
@@ -0,0 +1,12 @@
|
||||
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
|
||||
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
|
||||
# Released under the modified BSD license. See COPYING.md for more details.
|
||||
|
||||
"""
|
||||
Formulation described in:
|
||||
|
||||
Arroyo, J. M., & Conejo, A. J. (2000). Optimal response of a thermal unit
|
||||
to an electricity spot market. IEEE Transactions on power systems, 15(3),
|
||||
1098-1104.
|
||||
"""
|
||||
struct ArrCon2000 <: RampingFormulation end
|
||||
Reference in New Issue
Block a user