Use 4-digit years

This commit is contained in:
2021-06-01 13:08:07 -05:00
parent fc8995eff1
commit ecb13dba7c
24 changed files with 71 additions and 83 deletions

View File

@@ -0,0 +1,116 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
function _add_ramp_eqs!(
model::JuMP.Model,
g::Unit,
formulation::DamKucRajAta2016,
)::Nothing
# TODO: Move upper case constants to model[:instance]
RESERVES_WHEN_START_UP = true
RESERVES_WHEN_RAMP_UP = true
RESERVES_WHEN_RAMP_DOWN = true
RESERVES_WHEN_SHUT_DOWN = true
known_initial_conditions = true
is_initially_on = (g.initial_status > 0)
SU = g.startup_limit
SD = g.shutdown_limit
RU = g.ramp_up_limit
RD = g.ramp_down_limit
gn = g.name
eq_str_ramp_down = _init(model, :eq_str_ramp_down)
eq_str_ramp_up = _init(model, :eq_str_ramp_up)
is_on = model[:is_on]
prod_above = model[:prod_above]
reserve = model[:reserve]
switch_off = model[:switch_off]
switch_on = model[:switch_on]
for t in 1:model[:instance].time
time_invariant =
(t > 1) ? (abs(g.min_power[t] - g.min_power[t-1]) < 1e-7) : true
# if t > 1 && !time_invariant
# @warn(
# "Ramping according to Damcı-Kurt et al. (2016) requires " *
# "time-invariant minimum power. This does not hold for " *
# "generator $(gn): min_power[$t] = $(g.min_power[t]); " *
# "min_power[$(t-1)] = $(g.min_power[t-1]). Reverting to " *
# "Arroyo and Conejo (2000) formulation for this generator.",
# )
# end
max_prod_this_period =
prod_above[gn, t] + (
RESERVES_WHEN_START_UP || RESERVES_WHEN_RAMP_UP ?
reserve[gn, t] : 0.0
)
min_prod_last_period = 0.0
if t > 1 && time_invariant
min_prod_last_period = prod_above[gn, t-1]
# Equation (35) in Kneuven et al. (2020)
# Sparser version of (24)
eq_str_ramp_up[gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - g.min_power[t] - RU) * switch_on[gn, t] +
RU * is_on[gn, t]
)
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
if t > 1
min_prod_last_period =
prod_above[gn, t-1] + g.min_power[t-1] * is_on[gn, t-1]
else
min_prod_last_period = max(g.initial_power, 0.0)
end
# Add the min prod at time t back in to max_prod_this_period to get _total_ production
# (instead of using the amount above minimum, as min prod for t < 1 is unknown)
max_prod_this_period += g.min_power[t] * is_on[gn, t]
# Modified version of equation (35) in Kneuven et al. (2020)
# Equivalent to (24)
eq_str_ramp_up[gn, t] = @constraint(
model,
max_prod_this_period - min_prod_last_period <=
(SU - RU) * switch_on[gn, t] + RU * is_on[gn, t]
)
end
max_prod_last_period =
min_prod_last_period + (
t > 1 && (RESERVES_WHEN_SHUT_DOWN || RESERVES_WHEN_RAMP_DOWN) ?
reserve[gn, t-1] : 0.0
)
min_prod_this_period = prod_above[gn, t]
on_last_period = 0.0
if t > 1
on_last_period = is_on[gn, t-1]
elseif (known_initial_conditions && g.initial_status > 0)
on_last_period = 1.0
end
if t > 1 && time_invariant
# Equation (36) in Kneuven et al. (2020)
eq_str_ramp_down[gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - g.min_power[t] - RD) * switch_off[gn, t] +
RD * on_last_period
)
elseif (t == 1 && is_initially_on) || (t > 1 && !time_invariant)
# Add back in min power
min_prod_this_period += g.min_power[t] * is_on[gn, t]
# Modified version of equation (36) in Kneuven et al. (2020)
# Equivalent to (25)
eq_str_ramp_down[gn, t] = @constraint(
model,
max_prod_last_period - min_prod_this_period <=
(SD - RD) * switch_off[gn, t] + RD * on_last_period
)
end
end
end

View File

@@ -0,0 +1,11 @@
# UnitCommitment.jl: Optimization Package for Security-Constrained Unit Commitment
# Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved.
# Released under the modified BSD license. See COPYING.md for more details.
"""
Formulation described in:
Damcı-Kurt, P., Küçükyavuz, S., Rajan, D., & Atamtürk, A. (2016). A polyhedral
study of production ramping. Mathematical Programming, 158(1), 175-205.
"""
struct DamKucRajAta2016 <: RampingFormulation end